Suppr超能文献

使用遗传算法优化四足步行软体机器人的实际比例-积分-微分(PID)控制。

Optimizing actual PID control for walking quadruped soft robots using genetic algorithms.

作者信息

Meng Hongjun, Zhang Shupeng, Zhang Wei, Ren Yuke

机构信息

School of Automation and Software, Shanxi University, Taiyuan, Shanxi, 030006, USA.

出版信息

Sci Rep. 2024 Oct 29;14(1):25946. doi: 10.1038/s41598-024-77100-7.

Abstract

The construction of soft robots's models and controllers remains a significant challenge. In this paper, we propose a new walking control method for the quadruped soft robot named genetic algorithm-optimized PID. First, we construct the control model correlating valve voltage with leg bending based on the geometrical analysis. This modeling approach leverages the characteristics of novel leg structure and bend sensor, thereby streamlining the control model for locomotion of quadruped soft robotic. Moreover, We apply the genetic algorithm to automatically tune parameters and optimize PID controllers, aiming to enhance control performance. The application of the proposed method to the walking control has been uniquely demonstrated on a real 3D-printed quadruped soft robot. Experimental results indicate that the genetic algorithm-optimized PID controller significantly improves trajectory tracking compared to the Ziegler-Nichols tuning method. This optimization increases the robot's walking speed from 5 mm/s to 8 mm/s, reduces the error rate by 2.4064%, decreases overshoot by 12.55%, and shortens response time by 0.5 s, substantially enhancing the controller's overall performance. Additionally, compared to particle swarm optimization, the proposed method further improves performance by reducing the error rate by 0.4079%, overshoot by 8.4%, and response time by 1.0 s.

摘要

软机器人模型和控制器的构建仍然是一项重大挑战。在本文中,我们为四足软机器人提出了一种新的行走控制方法,即遗传算法优化的PID。首先,我们基于几何分析构建了将阀电压与腿部弯曲相关联的控制模型。这种建模方法利用了新型腿部结构和弯曲传感器的特性,从而简化了四足软机器人运动的控制模型。此外,我们应用遗传算法自动调整参数并优化PID控制器,旨在提高控制性能。所提出的方法在实际的3D打印四足软机器人上独特地展示了其在行走控制中的应用。实验结果表明,与齐格勒-尼科尔斯整定方法相比,遗传算法优化的PID控制器显著提高了轨迹跟踪性能。这种优化将机器人的行走速度从5毫米/秒提高到8毫米/秒,将错误率降低了2.4064%,将超调量降低了12.55%,并将响应时间缩短了0.5秒,大大提高了控制器的整体性能。此外,与粒子群优化相比,所提出的方法通过将错误率降低0.4079%、超调量降低8.4%和响应时间缩短1.0秒进一步提高了性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d1/11522684/7864615eff86/41598_2024_77100_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验