Suppr超能文献

通过使用常规就诊数据的机器学习方法预测肌萎缩侧索硬化症进展的临床事件:一项可行性研究。

Predicting clinical events characterizing the progression of amyotrophic lateral sclerosis via machine learning approaches using routine visits data: a feasibility study.

机构信息

Department of Information Engineering, University of Padova, Padua, Italy.

Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy.

出版信息

BMC Med Inform Decis Mak. 2024 Oct 29;24(Suppl 4):318. doi: 10.1186/s12911-024-02719-5.

Abstract

BACKGROUND

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in death within a short time span (3-5 years). One of the major challenges in treating ALS is its highly heterogeneous disease progression and the lack of effective prognostic tools to forecast it. The main aim of this study was, then, to test the feasibility of predicting relevant clinical outcomes that characterize the progression of ALS with a two-year prediction horizon via artificial intelligence techniques using routine visits data.

METHODS

Three classification problems were considered: predicting death (binary problem), predicting death or percutaneous endoscopic gastrostomy (PEG) (multiclass problem), and predicting death or non-invasive ventilation (NIV) (multiclass problem). Two supervised learning models, a logistic regression (LR) and a deep learning multilayer perceptron (MLP), were trained ensuring technical robustness and reproducibility. Moreover, to provide insights into model explainability and result interpretability, model coefficients for LR and Shapley values for both LR and MLP were considered to characterize the relationship between each variable and the outcome.

RESULTS

On the one hand, predicting death was successful as both models yielded F1 scores and accuracy well above 0.7. The model explainability analysis performed for this outcome allowed for the understanding of how different methodological approaches consider the input variables when performing the prediction. On the other hand, predicting death alongside PEG or NIV proved to be much more challenging (F1 scores and accuracy in the 0.4-0.6 interval).

CONCLUSIONS

In conclusion, predicting death due to ALS proved to be feasible. However, predicting PEG or NIV in a multiclass fashion proved to be unfeasible with these data, regardless of the complexity of the methodological approach. The observed results suggest a potential ceiling on the amount of information extractable from the database, e.g., due to the intrinsic difficulty of the prediction tasks at hand, or to the absence of crucial predictors that are, however, not currently collected during routine practice.

摘要

背景

肌萎缩侧索硬化症(ALS)是一种进行性神经退行性疾病,患者在短时间内(3-5 年内)死亡。治疗 ALS 的主要挑战之一是其高度异质性的疾病进展和缺乏有效的预后工具来预测疾病。因此,本研究的主要目的是通过使用常规就诊数据的人工智能技术,检验在两年预测期内预测 ALS 相关临床结局的可行性,这些结局特征可用于预测 ALS 的进展。

方法

考虑了三个分类问题:预测死亡(二分类问题)、预测死亡或经皮内镜下胃造口术(PEG)(多分类问题)以及预测死亡或无创通气(NIV)(多分类问题)。两种监督学习模型,逻辑回归(LR)和深度学习多层感知机(MLP),在保证技术稳健性和可重复性的前提下进行了训练。此外,为了深入了解模型的可解释性和结果的可解释性,考虑了 LR 的模型系数和 LR 和 MLP 的 Shapley 值,以表征每个变量与结果之间的关系。

结果

一方面,预测死亡是成功的,两种模型的 F1 评分和准确率均高于 0.7。针对这一结果进行的模型解释性分析,使得我们可以了解不同方法学方法在进行预测时如何考虑输入变量。另一方面,同时预测死亡、PEG 或 NIV 证明难度更大(F1 评分和准确率在 0.4-0.6 之间)。

结论

总之,预测由于 ALS 导致的死亡是可行的。然而,使用这些数据以多分类的方式预测 PEG 或 NIV 是不可行的,无论方法学方法的复杂性如何。观察到的结果表明,从数据库中提取信息的能力可能存在上限,例如,由于手头的预测任务本身具有内在的难度,或者由于目前在常规实践中未收集到但却是关键的预测因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/055e/11523576/9eaf0f38451e/12911_2024_2719_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验