Suppr超能文献

用于利用有限功能磁共振成像数据进行青少年健康风险预测的多尺度异步相关性和二维卷积自动编码器

Multi-scale asynchronous correlation and 2D convolutional autoencoder for adolescent health risk prediction with limited fMRI data.

作者信息

Gao Di, Yang Guanghao, Shen Jiarun, Wu Fang, Ji Chao

机构信息

School of Physical Education, China University of Mining & Technology (Beijing), Beijing, China.

Physical Education Teaching and Research Section, Beijing City University, Beijing, China.

出版信息

Front Comput Neurosci. 2024 Oct 15;18:1478193. doi: 10.3389/fncom.2024.1478193. eCollection 2024.

Abstract

INTRODUCTION

Adolescence is a fundamental period of transformation, encompassing extensive physical, psychological, and behavioral changes. Effective health risk assessment during this stage is crucial for timely intervention, yet traditional methodologies often fail to accurately predict mental and behavioral health risks due to the intricacy of neural dynamics and the scarcity of quality-annotated fMRI datasets.

METHODS

This study introduces an innovative deep learning-based framework for health risk assessment in adolescents by employing a combination of a two-dimensional convolutional autoencoder (2DCNN-AE) with multi-sequence learning and multi-scale asynchronous correlation information extraction techniques. This approach facilitates the intricate analysis of spatial and temporal features within fMRI data, aiming to enhance the accuracy of the risk assessment process.

RESULTS

Upon examination using the Adolescent Risk Behavior (AHRB) dataset, which includes fMRI scans from 174 individuals aged 17-22, the proposed methodology exhibited a significant improvement over conventional models. It attained a precision of 83.116%, a recall of 84.784%, and an F1-score of 83.942%, surpassing standard benchmarks in most pertinent evaluative measures.

DISCUSSION

The results underscore the superior performance of the deep learning-based approach in understanding and predicting health-related risks in adolescents. It underscores the value of this methodology in advancing the precision of health risk assessments, offering an enhanced tool for early detection and potential intervention strategies in this sensitive developmental stage.

摘要

引言

青春期是一个关键的转变时期,涵盖了广泛的身体、心理和行为变化。在这一阶段进行有效的健康风险评估对于及时干预至关重要,但由于神经动力学的复杂性以及高质量标注的功能磁共振成像(fMRI)数据集的稀缺,传统方法往往无法准确预测心理和行为健康风险。

方法

本研究引入了一种创新的基于深度学习的青少年健康风险评估框架,该框架采用二维卷积自动编码器(2DCNN-AE)与多序列学习以及多尺度异步相关信息提取技术相结合的方法。这种方法有助于对fMRI数据中的时空特征进行复杂分析,旨在提高风险评估过程的准确性。

结果

使用青少年风险行为(AHRB)数据集进行检验,该数据集包括174名年龄在17 - 22岁个体的fMRI扫描数据,所提出的方法相较于传统模型有显著改进。它达到了83.116%的精确率、84.784%的召回率和83.942%的F1分数,在大多数相关评估指标上超过了标准基准。

讨论

结果强调了基于深度学习的方法在理解和预测青少年健康相关风险方面的卓越性能。它凸显了这种方法在提高健康风险评估精度方面的价值,为在这个敏感的发育阶段进行早期检测和潜在干预策略提供了一个更强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16e4/11518741/bdea2168562b/fncom-18-1478193-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验