Ardila Carlos M, González-Arroyave Daniel
Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín 0057, Colombia.
Department of Surgery, Pontificia Universidad Bolivariana, Medellín 0057, Colombia.
World J Clin Oncol. 2024 Oct 24;15(10):1256-1263. doi: 10.5306/wjco.v15.i10.1256.
In their recent study published in the , the article found that minimally invasive laparoscopic surgery under general anesthesia demonstrates superior efficacy and safety compared to traditional open surgery for early ovarian cancer patients. This editorial discusses the integration of machine learning in laparoscopic surgery, emphasizing its transformative potential in improving patient outcomes and surgical precision. Machine learning algorithms analyze extensive datasets to optimize procedural techniques, enhance decision-making, and personalize treatment plans. Advanced imaging modalities like augmented reality and real-time tissue classification, alongside robotic surgical systems and virtual reality simulations driven by machine learning, enhance imaging and training techniques, offering surgeons clearer visualization and precise tissue manipulation. Despite promising advancements, challenges such as data privacy, algorithm bias, and regulatory hurdles need addressing for the responsible deployment of machine learning technologies. Interdisciplinary collaborations and ongoing technological innovations promise further enhancement in laparoscopic surgery, fostering a future where personalized medicine and precision surgery redefine patient care.
在他们最近发表于《》的研究中,文章发现,对于早期卵巢癌患者,全身麻醉下的微创腹腔镜手术与传统开放手术相比,显示出更高的疗效和安全性。这篇社论讨论了机器学习在腹腔镜手术中的整合,强调了其在改善患者预后和手术精度方面的变革潜力。机器学习算法分析大量数据集,以优化手术技术、加强决策制定并使治疗方案个性化。增强现实和实时组织分类等先进成像模式,以及由机器学习驱动的机器人手术系统和虚拟现实模拟,提升了成像和训练技术,为外科医生提供更清晰的视野和精确的组织操作。尽管取得了令人鼓舞的进展,但数据隐私、算法偏差和监管障碍等挑战仍需解决,以确保机器学习技术的负责任应用。跨学科合作和持续的技术创新有望进一步提升腹腔镜手术水平,开创一个个性化医疗和精准手术重新定义患者护理的未来。