Suppr超能文献

推进毒性预测:下一代风险评估中的外推法综述。

Advancing Toxicity Predictions: A Review on to Extrapolation in Next-Generation Risk Assessment.

作者信息

Han Peiling, Li Xuehua, Yang Jingyuan, Zhang Yuxuan, Chen Jingwen

机构信息

Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Liaoning, Dalian 116024, China.

出版信息

Environ Health (Wash). 2024 May 9;2(7):499-513. doi: 10.1021/envhealth.4c00043. eCollection 2024 Jul 19.

Abstract

As a key step in next-generation risk assessment (NGRA), to extrapolation (IVIVE) aims to mobilize a mechanism-based understanding of toxicology to translate bioactive chemical concentrations obtained from assays to corresponding exposures likely to induce bioactivity . This conversion can be achieved via physiologically-based toxicokinetic (PBTK) models and machine learning (ML) algorithms. The last 5 years have witnessed a period of rapid development in IVIVE, with the number of IVIVE-related publications increasing annually. This Review aims to (1) provide a comprehensive overview of the origin of IVIVE and initiatives undertaken by multiple national agencies to promote its development; (2) compile and sort out IVIVE-related publications and perform a clustering analysis of their high-frequency keywords to capture key research hotspots; (3) comprehensively review PBTK and ML model-based IVIVE studies published in the last 5 years to understand the research directions and methodology developments; and (4) propose future perspectives for IVIVE from two aspects: expanding the scope of application and integrating new technologies. The former includes focusing on metabolite toxicity, conducting IVIVE studies on susceptible populations, advancing ML-based quantitative IVIVE models, and extending research to ecological effects. The latter includes combining systems biology, multiomics, and adverse outcome networks with IVIVE, aiming at a more microscopic, mechanistic, and comprehensive toxicity prediction. This Review highlights the important value of IVIVE in NGRA, with the goal of providing confidence for its routine use in chemical prioritization, hazard assessment, and regulatory decision making.

摘要

作为下一代风险评估(NGRA)的关键步骤,体外体内外推法(IVIVE)旨在利用基于机制的毒理学理解,将从实验中获得的生物活性化学物质浓度转化为可能诱导生物活性的相应暴露水平。这种转化可以通过基于生理学的毒代动力学(PBTK)模型和机器学习(ML)算法来实现。在过去5年中,IVIVE经历了快速发展时期,与IVIVE相关的出版物数量逐年增加。本综述旨在:(1)全面概述IVIVE的起源以及多个国家机构为促进其发展而采取的举措;(2)整理和梳理与IVIVE相关的出版物,并对其高频关键词进行聚类分析,以捕捉关键研究热点;(3)全面回顾过去5年发表的基于PBTK和ML模型的IVIVE研究,以了解研究方向和方法学发展;(4)从扩大应用范围和整合新技术两个方面提出IVIVE的未来展望。前者包括关注代谢物毒性、对易感人群进行IVIVE研究、推进基于ML的定量IVIVE模型以及将研究扩展到生态效应。后者包括将系统生物学、多组学和不良结局网络与IVIVE相结合,旨在实现更微观、基于机制和全面的毒性预测。本综述强调了IVIVE在NGRA中的重要价值,目的是为其在化学物质优先级排序、危害评估和监管决策中的常规使用提供信心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0970/11504544/3f7cabc6c3e0/eh4c00043_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验