Suppr超能文献

新冠疫情对怀旧社交媒体使用的影响。

The impact of the COVID-19 pandemic on nostalgic social media use.

作者信息

Xiang Peng, Chen Lijuan, Xu Fuming, Du Shasha, Liu Mingxuan, Zhang Yimeng, Tu Jiayu, Yin Xiaoyuan

机构信息

Department of Social Work, Nanjing University of Finance and Economics, Nanjing, China.

The High-Quality Development Evaluation Institute, Nanjing University of Posts and Telecommunications, Nanjing, China.

出版信息

Front Psychol. 2024 Oct 15;15:1431184. doi: 10.3389/fpsyg.2024.1431184. eCollection 2024.

Abstract

INTRODUCTION

Despite popular speculation that nostalgic social media use skyrocketed during the COVID-19 pandemic, this has yet to be formally investigated in the scientific literature.

METHODS

Interrupted time series analysis (ITSA) using a segmented regression model was performed to examine the changes in the weekly volume of searches for nostalgic songs on (the Chinese version of TikTok), as a proxy for nostalgic social media use, before and after the lockdown of Wuhan (signaled the start of the pandemic on a national scale in China).

RESULTS

Across the study period (January 1, 2019-February 28, 2021), an immediate and significant increase in nostalgic social media use was observed when the pandemic initially started (95% CI = [47314.30, 154969.60],  < 0.001) compared with the pre-pandemic baseline.

DISCUSSION

This study provides empirical evidence for the impact of the pandemic on nostalgic social media use. It also advances our understanding of the increased usage of social media during the pandemic. Additionally, as nostalgia has drawn increasing attention from media researchers, this study offers methodological insights into the quantification of nostalgia.

摘要

引言

尽管有普遍猜测称,在新冠疫情期间怀旧社交媒体的使用激增,但科学文献中尚未对此进行正式研究。

方法

采用分段回归模型进行中断时间序列分析(ITSA),以考察武汉封城(标志着中国全国范围内疫情开始)前后,作为怀旧社交媒体使用代理指标的抖音(中文版)上每周怀旧歌曲搜索量的变化。

结果

在整个研究期间(2019年1月1日至2021年2月28日),与疫情前基线相比,疫情最初爆发时怀旧社交媒体的使用立即出现显著增加(95%置信区间=[47314.30, 154969.60],P<0.001)。

讨论

本研究为疫情对怀旧社交媒体使用的影响提供了实证证据。它还增进了我们对疫情期间社交媒体使用增加情况的理解。此外,由于怀旧已越来越受到媒体研究者的关注,本研究为怀旧的量化提供了方法学见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8770/11518736/8fa2918c3176/fpsyg-15-1431184-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验