Suppr超能文献

基于深度学习从锥束图像生成盆腔合成计算机断层扫描的最小成像剂量

Minimum imaging dose for deep learning-based pelvic synthetic computed tomography generation from cone beam images.

作者信息

Chan Yan Chi Ivy, Li Minglun, Thummerer Adrian, Parodi Katia, Belka Claus, Kurz Christopher, Landry Guillaume

机构信息

Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich 81377, Germany.

Department of Radiation Oncology, Lueneburg Hospital, Lueneburg 21339, Germany.

出版信息

Phys Imaging Radiat Oncol. 2024 Mar 22;30:100569. doi: 10.1016/j.phro.2024.100569. eCollection 2024 Apr.

Abstract

BACKGROUND AND PURPOSE

Daily cone-beam computed tomography (CBCT) in image-guided radiotherapy administers radiation exposure and subjects patients to secondary cancer risk. Reducing imaging dose remains challenging as image quality deteriorates. We investigated three imaging dose levels by reducing projections and correcting images using two deep learning algorithms, aiming at identifying the lowest achievable imaging dose.

MATERIALS AND METHODS

CBCTs were reconstructed with 100%, 25%, 15% and 10% projections. Models were trained (30), validated (3) and tested (8) with prostate cancer patient datasets. We optimized and compared the performance of 1) a cycle generative adversarial network (cycleGAN) with residual connection and 2) a contrastive unpaired translation network (CUT) to generate synthetic computed tomography (sCT) from reduced imaging dose CBCTs. Volumetric modulated arc therapy plans were optimized on a reference intensity-corrected full dose CBCT and recalculated on sCTs. Hounsfield unit (HU) and positioning accuracy were evaluated. Bladder and rectum were manually delineated to determine anatomical fidelity.

RESULTS

All sCTs achieved average mean absolute mean absolute error/structural similarity index measure/peak signal-to-noise ratio of 59HU/ 0.94/ 33 dB. All dose-volume histogram parameter differences were within 2 Gy or 2 . Positioning differences were 0.30 mm or 0.30°. cycleGAN with Dice similarity coefficients (DSC) for bladder/rectum of 0.85/ 0.81 performed better than CUT ( 0.83/ 0.76). A significantly lower DSC accuracy was observed for 15 and 10 sCTs. cycleGAN performed better than CUT for contouring, however both yielded comparable outcomes in other evaluations.

CONCLUSION

sCTs based on different CBCT doses using cycleGAN and CUT were investigated. Based on segmentation accuracy, 25 is the minimum imaging dose.

摘要

背景与目的

在图像引导放射治疗中,每日进行锥形束计算机断层扫描(CBCT)会带来辐射暴露,并使患者面临患继发性癌症的风险。随着图像质量下降,降低成像剂量仍然具有挑战性。我们通过减少投影并使用两种深度学习算法校正图像,研究了三种成像剂量水平,旨在确定可实现的最低成像剂量。

材料与方法

使用100%、25%、15%和10%的投影重建CBCT。使用前列腺癌患者数据集对模型进行训练(30例)、验证(3例)和测试(8例)。我们优化并比较了1)具有残差连接的循环生成对抗网络(cycleGAN)和2)对比无配对翻译网络(CUT)的性能,以从降低成像剂量的CBCT生成合成计算机断层扫描(sCT)。在参考强度校正的全剂量CBCT上优化容积调强弧形治疗计划,并在sCT上重新计算。评估了亨氏单位(HU)和定位准确性。手动勾勒膀胱和直肠轮廓以确定解剖保真度。

结果

所有sCT的平均平均绝对误差/结构相似性指数测量/峰值信噪比分别为59HU/0.94/33dB。所有剂量体积直方图参数差异均在2Gy或2以内。定位差异为0.30mm或0.30°。膀胱/直肠的骰子相似系数(DSC)为0.85/0.81的cycleGAN比CUT(0.83/0.76)表现更好。在15和10的sCT中观察到显著较低的DSC准确性。cycleGAN在轮廓勾画方面比CUT表现更好,然而在其他评估中两者产生的结果相当。

结论

研究了使用cycleGAN和CUT基于不同CBCT剂量的sCT。基于分割准确性,25是最低成像剂量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7641/11519690/25ab4acc8ac8/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验