基于互联网的监测,以追踪全美国季节性过敏的趋势。
Internet-based surveillance to track trends in seasonal allergies across the United States.
作者信息
Stallard-Olivera Elias, Fierer Noah
机构信息
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA.
Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
出版信息
PNAS Nexus. 2024 Oct 29;3(10):pgae430. doi: 10.1093/pnasnexus/pgae430. eCollection 2024 Oct.
Over a quarter of adults in the United States suffer from seasonal allergies, yet the broader spatiotemporal patterns in seasonal allergy trends remain poorly resolved. This knowledge gap persists due to difficulties in quantifying allergies as symptoms are seldom severe enough to warrant hospital visits. We show that we can use machine learning to extract relevant data from Twitter posts and Google searches to examine population-level trends in seasonal allergies at high spatial and temporal resolution, validating the approach against hospital record data obtained from selected counties in California, United States. After showing that internet-derived data can be used as a proxy for aeroallergen exposures, we demonstrate the utility of our approach by mapping seasonal allergy-related online activity across the 144 most populous US counties at daily time steps over an 8-year period, highlighting the spatial and temporal dynamics in allergy trends across the continental United States.
美国超过四分之一的成年人患有季节性过敏症,但季节性过敏趋势更广泛的时空模式仍未得到很好的解析。由于难以将过敏症状量化,因为症状很少严重到需要住院治疗,所以这一知识空白一直存在。我们表明,我们可以使用机器学习从推特帖子和谷歌搜索中提取相关数据,以高时空分辨率研究季节性过敏的人群水平趋势,并根据从美国加利福尼亚州选定县获得的医院记录数据验证该方法。在表明互联网衍生数据可作为空气过敏原暴露的替代指标后,我们通过在8年时间内按每日时间步长绘制美国144个人口最多的县与季节性过敏相关的在线活动图,展示了我们方法的实用性,突出了美国大陆过敏趋势的时空动态。