Suppr超能文献

从搜索引擎和社交媒体数据中涌现的用于确定眼病模式的监测工具。

Surveillance Tools Emerging From Search Engines and Social Media Data for Determining Eye Disease Patterns.

作者信息

Deiner Michael S, Lietman Thomas M, McLeod Stephen D, Chodosh James, Porco Travis C

机构信息

Department of Ophthalmology, University of California San Francisco.

Department of Ophthalmology, University of California San Francisco2F. I. Proctor Foundation, University of California San Francisco3Department of Epidemiology and Biostatistics, University of California San Francisco4Global Health Sciences, University of California San Francisco.

出版信息

JAMA Ophthalmol. 2016 Sep 1;134(9):1024-30. doi: 10.1001/jamaophthalmol.2016.2267.

Abstract

IMPORTANCE

Internet-based search engine and social media data may provide a novel complementary source for better understanding the epidemiologic factors of infectious eye diseases, which could better inform eye health care and disease prevention.

OBJECTIVE

To assess whether data from internet-based social media and search engines are associated with objective clinic-based diagnoses of conjunctivitis.

DESIGN, SETTING, AND PARTICIPANTS: Data from encounters of 4143 patients diagnosed with conjunctivitis from June 3, 2012, to April 26, 2014, at the University of California San Francisco (UCSF) Medical Center, were analyzed using Spearman rank correlation of each weekly observation to compare demographics and seasonality of nonallergic conjunctivitis with allergic conjunctivitis. Data for patient encounters with diagnoses for glaucoma and influenza were also obtained for the same period and compared with conjunctivitis. Temporal patterns of Twitter and Google web search data, geolocated to the United States and associated with these clinical diagnoses, were compared with the clinical encounters. The a priori hypothesis was that weekly internet-based searches and social media posts about conjunctivitis may reflect the true weekly clinical occurrence of conjunctivitis.

MAIN OUTCOMES AND MEASURES

Weekly total clinical diagnoses at UCSF of nonallergic conjunctivitis, allergic conjunctivitis, glaucoma, and influenza were compared using Spearman rank correlation with equivalent weekly data on Tweets related to disease or disease-related keyword searches obtained from Google Trends.

RESULTS

Seasonality of clinical diagnoses of nonallergic conjunctivitis among the 4143 patients (2364 females [57.1%] and 1776 males [42.9%]) with 5816 conjunctivitis encounters at UCSF correlated strongly with results of Google searches in the United States for the term pink eye (ρ, 0.68 [95% CI, 0.52 to 0.78]; P < .001) and correlated moderately with Twitter results about pink eye (ρ, 0.38 [95% CI, 0.16 to 0.56]; P < .001) and with clinical diagnosis of influenza (ρ, 0.33 [95% CI, 0.12 to 0.49]; P < .001), but did not significantly correlate with seasonality of clinical diagnoses of allergic conjunctivitis diagnosis at UCSF (ρ, 0.21 [95% CI, -0.02 to 0.42]; P = .06) or with results of Google searches in the United States for the term eye allergy (ρ, 0.13 [95% CI, -0.06 to 0.32]; P = .19). Seasonality of clinical diagnoses of allergic conjunctivitis at UCSF correlated strongly with results of Google searches in the United States for the term eye allergy (ρ, 0.44 [95% CI, 0.24 to 0.60]; P < .001) and eye drops (ρ, 0.47 [95% CI, 0.27 to 0.62]; P < .001).

CONCLUSIONS AND RELEVANCE

Internet-based search engine and social media data may reflect the occurrence of clinically diagnosed conjunctivitis, suggesting that these data sources can be leveraged to better understand the epidemiologic factors of conjunctivitis.

摘要

重要性

基于互联网的搜索引擎和社交媒体数据可能为更好地了解感染性眼病的流行病学因素提供一种新的补充来源,从而为眼部保健和疾病预防提供更充分的信息。

目的

评估基于互联网的社交媒体和搜索引擎数据是否与基于临床的结膜炎客观诊断相关。

设计、设置和参与者:分析了2012年6月3日至2014年4月26日在加利福尼亚大学旧金山分校(UCSF)医学中心被诊断为结膜炎的4143例患者的就诊数据,使用斯皮尔曼等级相关性对每周的观察结果进行分析,以比较非过敏性结膜炎与过敏性结膜炎的人口统计学特征和季节性。还获取了同期青光眼和流感诊断患者的就诊数据,并与结膜炎数据进行比较。将定位到美国且与这些临床诊断相关的推特和谷歌网络搜索数据的时间模式与临床就诊情况进行比较。先验假设是,每周基于互联网的关于结膜炎的搜索和社交媒体帖子可能反映结膜炎的实际每周临床发病情况。

主要结局和测量指标

使用斯皮尔曼等级相关性将UCSF每周非过敏性结膜炎、过敏性结膜炎、青光眼和流感的总临床诊断与从谷歌趋势获得的与疾病或疾病相关关键词搜索相关的推文的等效每周数据进行比较。

结果

在UCSF有5816次结膜炎就诊经历的4143例患者(2364名女性[57.1%]和1776名男性[42.9%])中,非过敏性结膜炎临床诊断的季节性与美国谷歌搜索“红眼病”一词的结果密切相关(ρ,0.68[95%CI,0.52至0.78];P < .001),与推特上关于红眼病的结果中度相关(ρ,0.38[95%CI,0.16至0.56];P < .001),与流感临床诊断也中度相关(ρ,0.33[95%CI,0.12至0.49];P < .001),但与UCSF过敏性结膜炎临床诊断的季节性无显著相关性(ρ,0.21[95%CI,-0.02至0.42];P = .06),与美国谷歌搜索“眼部过敏”一词的结果也无显著相关性(ρ,0.13[95%CI,-0.06至0.32];P = .19)。UCSF过敏性结膜炎临床诊断的季节性与美国谷歌搜索“眼部过敏”一词的结果密切相关(ρ,0.44[95%CI,0.24至0.60];P < .001)以及与眼药水的搜索结果密切相关(ρ,0.47[95%CI,0.27至0.62];P < .001)。

结论和意义

基于互联网的搜索引擎和社交媒体数据可能反映临床诊断的结膜炎的发病情况,表明这些数据源可用于更好地了解结膜炎的流行病学因素。

相似文献

2
Google Searches and Detection of Conjunctivitis Epidemics Worldwide.谷歌搜索与全球结膜炎疫情的监测
Ophthalmology. 2019 Sep;126(9):1219-1229. doi: 10.1016/j.ophtha.2019.04.008. Epub 2019 Apr 11.

引用本文的文献

4
A bibliometric analysis of the advance of artificial intelligence in medicine.医学领域人工智能进展的文献计量分析
Front Med (Lausanne). 2025 Feb 21;12:1504428. doi: 10.3389/fmed.2025.1504428. eCollection 2025.
6
Characteristics of ocular findings of patients with coronavirus disease 2019 in China.中国2019冠状病毒病患者眼部表现特征
Front Med (Lausanne). 2025 Jan 13;11:1292821. doi: 10.3389/fmed.2024.1292821. eCollection 2024.
8
Precision public health, the key for future outbreak management: A scoping review.精准公共卫生:未来疫情管理的关键——一项范围综述
Digit Health. 2024 Aug 12;10:20552076241256877. doi: 10.1177/20552076241256877. eCollection 2024 Jan-Dec.

本文引用的文献

4
Global disease monitoring and forecasting with Wikipedia.利用维基百科进行全球疾病监测与预测。
PLoS Comput Biol. 2014 Nov 13;10(11):e1003892. doi: 10.1371/journal.pcbi.1003892. eCollection 2014 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验