Suppr超能文献

具有应用于历史对照的过离散二项数据的预测区间。

Prediction intervals for overdispersed binomial data with application to historical controls.

机构信息

Abteilung Biostatistik, Institut für Zellbiologie und Biophysik, Leibniz Universität Hannover, Hannover, Germany.

出版信息

Stat Med. 2019 Jun 30;38(14):2652-2663. doi: 10.1002/sim.8124. Epub 2019 Mar 5.

Abstract

Bioassays are highly standardized trials for assessing the impact of a chemical compound on a model organism. In that context, it is standard to compare several treatment groups with an untreated control. If the same type of bioassay is carried out several times, the amount of information about the historical controls rises with every new study. This information can be applied to predict the outcome of one future control using a prediction interval. Since the observations are counts of success out of a given sample size, like mortality or histopathological findings, the data can be assumed to be binomial but may exhibit overdispersion caused by the variability between historical studies. We describe two approaches that account for overdispersion: asymptotic prediction intervals using the quasi-binomial assumption and prediction intervals based on the quantiles of the beta-binomial distribution. Both interval types were α-calibrated using bootstrap methods. For an assessment of the intervals coverage probabilities, a simulation study based on various numbers of historical studies and sample sizes as well as different binomial proportions and varying levels of overdispersion was run. It could be shown that α-calibration can improve the coverage probabilities of both interval types. The coverage probability of the calibrated intervals, calculated based on at least 10 historical studies, was satisfactory close to the nominal 95%. In a last step, the intervals were computed based on a real data set from the NTP homepage, using historical controls from bioassays with the mice strain B6C3F1.

摘要

生物测定是评估化学化合物对模式生物影响的高度标准化试验。在这种情况下,通常将几个处理组与未经处理的对照组进行比较。如果多次进行相同类型的生物测定,那么关于历史对照的信息量会随着每一项新研究的进行而增加。可以使用预测区间来应用此信息来预测未来一个对照的结果。由于观察结果是给定样本大小内成功的次数,例如死亡率或组织病理学发现,因此可以假设数据是二项式的,但由于历史研究之间的变异性,可能会出现过离散。我们描述了两种考虑过离散的方法:使用拟二项式假设的渐近预测区间和基于贝塔二项式分布分位数的预测区间。这两种区间类型都使用自举方法进行了α 校准。为了评估区间的覆盖率概率,我们基于各种历史研究数量、样本大小以及不同二项式比例和不同过离散水平进行了模拟研究。结果表明,α 校准可以提高两种区间类型的覆盖率概率。基于至少 10 个历史研究计算的校准区间的覆盖率概率,接近名义的 95%,令人满意。最后,我们使用 NTP 主页上的真实数据集,并使用 B6C3F1 小鼠品系的生物测定中的历史对照,计算了这些区间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验