Suppr超能文献

过度分散二项式终点的预测区间及其在毒理学历史对照数据中的应用。

Prediction Intervals for Overdispersed Binomial Endpoints and Their Application to Toxicological Historical Control Data.

作者信息

Menssen Max, Rathjens Jonathan

机构信息

Department of Biostatistics, Leibniz University Hannover, Hannover, Germany.

Early Development Statistics, Chrestos GmbH, Essen, Germany.

出版信息

Pharm Stat. 2025 Sep-Oct;24(5):e70033. doi: 10.1002/pst.70033.

Abstract

For toxicology studies, the validation of the concurrent control group by historical control data (HCD) has become requirements. This validation is usually done by historical control limits (HCL), which should cover the observations of the concurrent control with a predefined level of confidence. In many applications, HCL are applied to dichotomous data, for example, the number of rats with a tumor versus the number of rats without a tumor (carcinogenicity studies) or the number of cells with a micronucleus out of a total number of cells. Dichotomous HCD may be overdispersed and can be heavily right- (or left-) skewed, which is usually not taken into account in the practical applications of HCL. To overcome this problem, four different prediction intervals (two frequentist, two Bayesian), that can be applied to such data, are proposed. Based on comprehensive Monte-Carlo simulations, the coverage probabilities of the proposed prediction intervals were compared to heuristical HCL typically used in daily toxicological routine (historical range, limits of the np-chart, mean 2 SD). Our simulations reveal, that frequentist bootstrap calibrated prediction intervals control the type-1-error best, but, also prediction intervals calculated based on Bayesian generalized linear mixed models appear to be practically applicable. Contrary, all heuristics fail to control the type-1-error. The application of HCL is demonstrated based on a real life data set containing historical controls from long-term carcinogenicity studies run on behalf of the U.S. National Toxicology Program. The proposed frequentist prediction intervals are publicly available from the R package predint, whereas R code for the computation of the two Bayesian prediction intervals is provided via GitHub.

摘要

在毒理学研究中,通过历史对照数据(HCD)对同期对照组进行验证已成为一项要求。这种验证通常通过历史对照限值(HCL)来完成,HCL应以预定义的置信水平涵盖同期对照的观察结果。在许多应用中,HCL应用于二分数据,例如,患肿瘤大鼠的数量与未患肿瘤大鼠的数量(致癌性研究),或细胞总数中含有微核的细胞数量。二分HCD可能过度离散,并且可能严重右偏(或左偏),而在HCL的实际应用中通常没有考虑到这一点。为了克服这个问题,本文提出了四种不同的预测区间(两种频率学派的,两种贝叶斯学派的),可应用于此类数据。基于全面的蒙特卡罗模拟,将所提出的预测区间的覆盖概率与日常毒理学常规中通常使用的启发式HCL(历史范围、np图的限值、均值±2标准差)进行了比较。我们的模拟结果表明,频率学派的自举校准预测区间对I型错误的控制效果最佳,但基于贝叶斯广义线性混合模型计算的预测区间在实际应用中似乎也适用。相反,所有启发式方法都无法控制I型错误。基于代表美国国家毒理学计划进行的长期致癌性研究的历史对照的真实数据集,展示了HCL的应用。所提出的频率学派预测区间可从R包predint中公开获取,而通过GitHub提供了计算两种贝叶斯预测区间的R代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32f/12433933/39a245af4b71/PST-24-0-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验