Suppr超能文献

基于对抗网络的知识图谱和药物分子图融合进行药物-药物相互作用预测

Integrated Knowledge Graph and Drug Molecular Graph Fusion via Adversarial Networks for Drug-Drug Interaction Prediction.

机构信息

School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China.

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou213164, China.

出版信息

J Chem Inf Model. 2024 Nov 11;64(21):8361-8372. doi: 10.1021/acs.jcim.4c01647. Epub 2024 Oct 30.

Abstract

The Co-administration of multiple drugs can enhance the efficacy of disease treatment by reducing drug resistance and side effects. However, it also raises the risk of adverse drug interactions, presenting a challenging problem in healthcare. Various approaches have been developed to predict drug-drug interactions (DDIs) by leveraging both knowledge graphs and drug attribute information. While these methods have shown promise, they often fail to effectively capture correlations between biomedical information in the knowledge graph and drug properties. This work introduces a novel end-to-end DDI predictor framework based on generative adversarial networks. This framework utilizes a message-passing neural network to capture molecular structure information while employing the knowledge-aware graph attention network to capture the representation of drugs in the knowledge graph through considering the importance of different multihop neighbor nodes and relationships. The dual generative adversarial networks employ two generators and two discriminators in knowledge graph embedding and molecular topology embedding for adversarial training to capture the interrelations and complementary knowledge between molecular structure information and semantic information from the knowledge graph. comprehensive experiments have demonstrated that the proposed method outperforms state-of-the-art algorithms in binary classification, with improvements of 1.0% in accuracy, 0.45% in area under the receiver operating characteristic curve (AUC), 0.24% in area under the precision-recall curve (AUPR), and 0.98% in F1 score. Furthermore, for multiclass classification tasks, improvements were observed across various evaluation metrics, including 0.9% in accuracy, 0.25% in macro precision, 0.2% in macro recall, and 0.28% in macro F1. Additionally, ablation studies were conducted to showcase the effectiveness and robustness of our method in DDI prediction tasks.

摘要

联合使用多种药物可以通过降低耐药性和副作用来提高疾病治疗效果。然而,这也增加了药物相互作用的不良风险,这在医疗保健中是一个具有挑战性的问题。已经开发了各种方法来通过利用知识图谱和药物属性信息来预测药物-药物相互作用(DDI)。虽然这些方法已经显示出了一定的前景,但它们往往无法有效地捕捉知识图谱中的生物医学信息与药物特性之间的相关性。这项工作介绍了一种基于生成对抗网络的新型端到端 DDI 预测器框架。该框架利用消息传递神经网络来捕获分子结构信息,同时利用知识感知图注意网络通过考虑不同多跳邻居节点和关系的重要性来捕获知识图谱中药物的表示。双生成对抗网络在知识图谱嵌入和分子拓扑嵌入中使用两个生成器和两个判别器进行对抗训练,以捕捉分子结构信息和知识图谱中语义信息之间的相互关系和互补知识。综合实验表明,所提出的方法在二进制分类中优于最先进的算法,在准确性方面提高了 1.0%,在接收者操作特征曲线下面积(AUC)方面提高了 0.45%,在精度-召回曲线下面积(AUPR)方面提高了 0.24%,在 F1 得分方面提高了 0.98%。此外,对于多类分类任务,在各种评估指标上都有所提高,包括准确性提高了 0.9%,宏精度提高了 0.25%,宏召回率提高了 0.2%,宏 F1 提高了 0.28%。此外,还进行了消融研究,以展示我们的方法在 DDI 预测任务中的有效性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验