Suppr超能文献

多视图特征表示与融合在药物-药物相互作用预测中的应用。

Multi-view feature representation and fusion for drug-drug interactions prediction.

机构信息

School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China.

Cooperative Innovation Center of Internet Healthcare, Zhengzhou University, Zhengzhou, China.

出版信息

BMC Bioinformatics. 2023 Mar 14;24(1):93. doi: 10.1186/s12859-023-05212-4.

Abstract

BACKGROUND

Drug-drug interactions (DDIs) prediction is vital for pharmacology and clinical application to avoid adverse drug reactions on patients. It is challenging because DDIs are related to multiple factors, such as genes, drug molecular structure, diseases, biological processes, side effects, etc. It is a crucial technology for Knowledge graph to present multi-relation among entities. Recently some existing graph-based computation models have been proposed for DDIs prediction and get good performance. However, there are still some challenges in the knowledge graph representation, which can extract rich latent features from drug knowledge graph (KG).

RESULTS

In this work, we propose a novel multi-view feature representation and fusion (MuFRF) architecture to realize DDIs prediction. It consists of two views of feature representation and a multi-level latent feature fusion. For the feature representation from the graph view and KG view, we use graph isomorphism network to map drug molecular structures and use RotatE to implement the vector representation on bio-medical knowledge graph, respectively. We design concatenate-level and scalar-level strategies in the multi-level latent feature fusion to capture latent features from drug molecular structure information and semantic features from bio-medical KG. And the multi-head attention mechanism achieves the optimization of features on binary and multi-class classification tasks. We evaluate our proposed method based on two open datasets in the experiments. Experiments indicate that MuFRF outperforms the classic and state-of-the-art models.

CONCLUSIONS

Our proposed model can fully exploit and integrate the latent feature from the drug molecular structure graph (graph view) and rich bio-medical knowledge graph (KG view). We find that a multi-view feature representation and fusion model can accurately predict DDIs. It may contribute to providing with some guidance for research and validation for discovering novel DDIs.

摘要

背景

药物-药物相互作用(DDI)预测对于药理学和临床应用至关重要,可避免患者出现不良反应。由于 DDI 与多个因素有关,如基因、药物分子结构、疾病、生物过程、副作用等,因此具有挑战性。知识图对于呈现实体之间的多关系是一项关键技术。最近,一些现有的基于图的计算模型已经被提出用于 DDI 预测,并取得了良好的性能。然而,在知识图表示方面仍然存在一些挑战,这些挑战可以从药物知识图(KG)中提取丰富的潜在特征。

结果

在这项工作中,我们提出了一种新颖的多视图特征表示和融合(MuFRF)架构,以实现 DDI 预测。它由特征表示的两个视图和多层次潜在特征融合组成。对于来自图视图和 KG 视图的特征表示,我们分别使用图同构网络来映射药物分子结构,使用 RotatE 来实现生物医学知识图上的向量表示。我们在多层次潜在特征融合中设计了串联级和标量级策略,以从药物分子结构信息中捕获潜在特征,从生物医学 KG 中捕获语义特征。多头注意力机制实现了二进制和多类分类任务的特征优化。我们在实验中基于两个开放数据集评估了我们提出的方法。实验表明,MuFRF 优于经典和最先进的模型。

结论

我们提出的模型可以充分利用和整合药物分子结构图(图视图)和丰富的生物医学知识图(KG 视图)中的潜在特征。我们发现,多视图特征表示和融合模型可以准确地预测 DDI。它可能有助于为发现新的 DDI 提供一些研究和验证的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d36e/10015807/e0c7e9e5fa68/12859_2023_5212_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验