Suppr超能文献

贝叶斯建模分析临床前小鼠肿瘤模型中的异质反应。

Bayesian modeling for analyzing heterogeneous response in preclinical mouse tumor models.

机构信息

Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA UK.

Oncology R&D, R&D, AstraZeneca, Cambridge CB2 0AA UK.

出版信息

Sci Transl Med. 2024 Oct 30;16(771):eadi9004. doi: 10.1126/scitranslmed.adi9004.

Abstract

In anticancer research, tumor growth measured in mouse models is important for assessing treatment efficacy for a treatment to progress to human clinical trials. Statistical analysis of time-to-event tumor volume data is complex because of heterogeneity in response and welfare-related data loss. Traditional statistical methods of testing the mean difference between groups are not robust because they assume common responses across a population. Heterogeneity in response is also seen in the clinic, and consequently, the assessment of the treatment considers the diversity through classification of the individual's response using the RECIST (Response Evaluation Criteria in Solid Tumors). To provide a comparable and translatable assessment of in vivo tumor response, we developed a statistical method called INSPECT (IN vivo reSPonsE Classification of Tumors) for analyzing heterogeneous responses through Bayesian modeling. This method can classify individual tumor behaviors into the categories of nonresponder, modest responder, stable responder, and regressing responder. Using both published and simulated data, we show that INSPECT methodology is more accurate and sensitive than existing methods with respect to balancing false-negative and false-positive rates. A case study demonstrates the value of INSPECT in drug projects for supporting the translation of drug efficacy from the preclinical phase into clinical trials. We also provide a package, "INSPECTumours," that launches a web interface to enable users to conduct the analysis and generate reports.

摘要

在抗癌研究中,测量小鼠模型中的肿瘤生长对于评估治疗效果以便将治疗方法推进到人体临床试验中非常重要。由于反应的异质性和与福利相关的数据丢失,时间事件肿瘤体积数据的统计分析非常复杂。传统的组间均值差异检验统计方法不稳健,因为它们假设整个群体的反应是一致的。在临床中也可以看到反应的异质性,因此,治疗的评估通过使用 RECIST(实体瘤反应评估标准)对个体的反应进行分类来考虑多样性。为了提供对体内肿瘤反应的可比和可翻译的评估,我们开发了一种称为 INSPECT(体内肿瘤反应分类)的统计方法,通过贝叶斯建模分析异质反应。该方法可以将个体肿瘤行为分类为无反应者、适度反应者、稳定反应者和消退反应者。使用已发表和模拟的数据,我们表明 INSPECT 方法在平衡假阴性和假阳性率方面比现有方法更准确和敏感。一个案例研究表明了 INSPECT 在药物项目中的价值,它支持将药物疗效从临床前阶段转化为临床试验。我们还提供了一个名为“INSPECTumours”的软件包,该软件包启动了一个网络界面,使用户能够进行分析并生成报告。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验