Shen Wenhui, Wan Kaiwei, Li Dechang, Gao Huajian, Shi Xinghua
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2414205121. doi: 10.1073/pnas.2414205121. Epub 2024 Oct 30.
Enhanced sampling techniques have traditionally encountered two significant challenges: identifying suitable reaction coordinates and addressing the exploration-exploitation dilemma, particularly the difficulty of escaping local energy minima. Here, we introduce Adaptive CVgen, a universal adaptive sampling framework designed to tackle these issues. Our approach utilizes a set of collective variables (CVs) to comprehensively cover the system's potential evolutionary phase space, generating diverse reaction coordinates to address the first challenge. Moreover, we integrate reinforcement learning strategies to dynamically adjust the generated reaction coordinates, thereby effectively balancing the exploration-exploitation dilemma. We apply this framework to sample the conformational space of six proteins transitioning from completely disordered states to folded states, as well as to model the chemical synthesis process of C60, achieving conformations that perfectly match the standard C60 structure. The results demonstrate Adaptive CVgen's effectiveness in exploring new conformations and escaping local minima, achieving both sampling efficiency and exploration accuracy. This framework holds potential for extending to various related challenges, including protein folding dynamics, drug targeting, and complex chemical reactions, thereby opening promising avenues for application in these fields.
传统上,增强采样技术面临两个重大挑战:识别合适的反应坐标以及解决探索-利用困境,尤其是逃离局部能量最小值的困难。在此,我们引入了Adaptive CVgen,这是一个旨在解决这些问题的通用自适应采样框架。我们的方法利用一组集体变量(CVs)全面覆盖系统的潜在演化相空间,生成多样的反应坐标以应对第一个挑战。此外,我们整合强化学习策略来动态调整生成的反应坐标,从而有效平衡探索-利用困境。我们将此框架应用于对六种从完全无序状态转变为折叠状态的蛋白质的构象空间进行采样,以及对C60的化学合成过程进行建模,获得了与标准C60结构完美匹配的构象。结果证明了Adaptive CVgen在探索新构象和逃离局部最小值方面的有效性,实现了采样效率和探索准确性。该框架有潜力扩展到各种相关挑战,包括蛋白质折叠动力学、药物靶向和复杂化学反应,从而为这些领域的应用开辟了有前景的途径。