Suppr超能文献

基于多智能体强化学习的蛋白质构象动力学自适应采样。

Multiagent Reinforcement Learning-Based Adaptive Sampling for Conformational Dynamics of Proteins.

机构信息

Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

J Chem Theory Comput. 2022 Sep 13;18(9):5422-5434. doi: 10.1021/acs.jctc.2c00683. Epub 2022 Aug 31.

Abstract

Machine learning is increasingly applied to improve the efficiency and accuracy of molecular dynamics (MD) simulations. Although the growth of distributed computer clusters has allowed researchers to obtain higher amounts of data, unbiased MD simulations have difficulty sampling rare states, even under massively parallel adaptive sampling schemes. To address this issue, several algorithms inspired by reinforcement learning (RL) have arisen to promote exploration of the slow collective variables (CVs) of complex systems. Nonetheless, most of these algorithms are not well-suited to leverage the information gained by simultaneously sampling a system from different initial states (e.g., a protein in different conformations associated with distinct functional states). To fill this gap, we propose two algorithms inspired by multiagent RL that extend the functionality of closely related techniques (REAP and TSLC) to situations where the sampling can be accelerated by learning from different regions of the energy landscape through coordinated agents. Essentially, the algorithms work by remembering which agent discovered each conformation and sharing this information with others at the action-space discretization step. A is introduced to modulate how different agents sense rewards from discovered states of the system. The consequences are three-fold: (i) agents learn to prioritize CVs using only relevant data, (ii) redundant exploration is reduced, and (iii) agents that obtain higher stakes are assigned more actions. We compare our algorithm with other adaptive sampling techniques (least counts, REAP, TSLC, and AdaptiveBandit) to show and rationalize the gain in performance.

摘要

机器学习越来越多地被应用于提高分子动力学 (MD) 模拟的效率和准确性。尽管分布式计算机集群的发展使研究人员能够获得更多的数据,但无偏 MD 模拟在采样罕见状态时仍然存在困难,即使在大规模并行自适应采样方案下也是如此。为了解决这个问题,一些受强化学习 (RL) 启发的算法已经出现,以促进对复杂系统的慢集体变量 (CVs) 的探索。然而,这些算法中的大多数都不适合利用从不同初始状态同时采样系统所获得的信息(例如,与不同功能状态相关的不同构象的蛋白质)。为了填补这一空白,我们提出了两种受多代理 RL 启发的算法,这些算法将与相关技术(REAP 和 TSLC)紧密相关的功能扩展到可以通过从能量景观的不同区域学习来加速采样的情况,通过协调代理。本质上,这些算法通过记住哪个代理发现了每个构象并在动作空间离散化步骤与其他代理共享此信息来工作。引入了一种方法来调节不同代理从系统发现的状态中感知奖励的方式。结果有三方面:(i)代理学会仅使用相关数据优先考虑 CVs,(ii)减少冗余探索,(iii)获得更高赌注的代理被分配更多的动作。我们将我们的算法与其他自适应采样技术(最小计数、REAP、TSLC 和自适应 Bandit)进行比较,以展示和合理化性能的提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验