Teng Qi, Li Wei, Hu Guangwei, Shu Yuanyuan, Liu Yun
IEEE J Biomed Health Inform. 2025 Feb;29(2):1035-1048. doi: 10.1109/JBHI.2024.3488528. Epub 2025 Feb 10.
Human Activity Recognition (HAR) is essential for monitoring and analyzing human behavior, particularly in health applications such as fall detection and chronic disease management. Traditional methods, even those incorporating attention mechanisms, often oversimplify the complex temporal and spatial dependencies in sensor data by processing features uniformly, leading to inadequate modeling of high-dimensional interactions. To address these limitations, we propose a novel framework: the Temporal-Spatial Feature Decoupling Unit with Layer-wise Training Convolutional Neural Network (CNN-TSFDU-LW). Our model enhances HAR accuracy by decoupling temporal and spatial dependencies, facilitating more precise feature extraction and reducing computational overhead. The TSFDU mechanism enables parallel processing of temporal and spatial features, thereby enriching the learned representations. Furthermore, layer-wise training with a local error function allows for independent updates of each CNN layer, reducing the number of parameters and improving memory efficiency without compromising performance. Experiments on four benchmark datasets (UCI-HAR, PAMAP2, UNIMIB-SHAR, and USC-HAD) demonstrate accuracy improvements ranging from 0.9% to 4.19% over state-of-the-art methods while simultaneously reducing computational complexity. Specifically, our framework achieves accuracy rates of 97.90% on UCI-HAR, 94.34% on PAMAP2, 78.90% on UNIMIB-SHAR, and 94.71% on USC-HAD, underscoring its effectiveness in complex HAR tasks. In conclusion, the CNN-TSFDU-LW framework represents a significant advancement in sensor-based HAR, delivering both improved accuracy and computational efficiency, with promising potential for enhancing health monitoring applications.
人类活动识别(HAR)对于监测和分析人类行为至关重要,特别是在诸如跌倒检测和慢性病管理等健康应用中。传统方法,即使是那些包含注意力机制的方法,通常通过统一处理特征来过度简化传感器数据中复杂的时间和空间依赖性,导致对高维交互的建模不足。为了解决这些限制,我们提出了一种新颖的框架:具有分层训练的卷积神经网络的时空特征解耦单元(CNN - TSFDU - LW)。我们的模型通过解耦时间和空间依赖性来提高HAR的准确性,促进更精确的特征提取并减少计算开销。TSFDU机制能够并行处理时间和空间特征,从而丰富学习到的表示。此外,使用局部误差函数进行分层训练允许每个CNN层独立更新,减少参数数量并提高内存效率,同时不影响性能。在四个基准数据集(UCI - HAR、PAMAP2、UNIMIB - SHAR和USC - HAD)上的实验表明,与现有方法相比,准确率提高了0.9%至4.19%,同时降低了计算复杂度。具体而言,我们的框架在UCI - HAR上达到了97.90%的准确率,在PAMAP2上达到了94.34%,在UNIMIB - SHAR上达到了78.90%,在USC - HAD上达到了94.71%,突出了其在复杂HAR任务中的有效性。总之,CNN - TSFDU - LW框架代表了基于传感器的HAR的重大进步,在提高准确率和计算效率方面都有出色表现,在增强健康监测应用方面具有广阔的潜力。