Woo Martin, Harby Ahmed A, Zulkernine Farhana, Abdulsalam Hanady M
School of Computing, Queen's University, ON K7L 3N6 Kingston, Canada.
Information Science Department, Kuwait University, 13060 Kuwait City, Kuwait.
Discov Artif Intell. 2025;5(1):233. doi: 10.1007/s44163-025-00503-6. Epub 2025 Aug 31.
Human Activity Recognition (HAR) using data streams from wearable sensors is challenging due to high data dimensionality, noise, and the lack of labeled data in unsupervised settings. Our prior work proved that traditional clustering models, which achieve state-of-the-art performance on simulated datasets, perform poorly on time-series numeric sensor data. This paper explores different autoencoder (AE) architectures to extract latent features with reduced dimensionality from streaming HAR datasets, which is then clustered using a clustering model to identify different activity patterns. Since the vanilla AE has shortcomings in learning distinguishing data patterns from spatio temporal time-series sensor data, we leverage the vanilla AE with convolutional, long-short term memory (LSTM), and a combination of convolutional and LSTM layers in multiple design phases. We apply supervised learning to train a superior spatio-temporal feature extraction AE model. Using the data features extracted by the trained AE, we train a clustering model with unsupervised learning approach. Our end-to-end integrated hybrid convolutional AE+LSTM feature extractor and K-Means clustering model achieves state-of-the-art clustering accuracy of up to 0.99 in terms of Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) scores for MobiAct and UCI HAR datasets, improving clustering performance by over 50% compared to previous methods. Further improvements are achieved through rigorous experimentation and advanced data preprocessing methods. We also present a visualization of the clusters, which explains the transitional activity patterns in the overlapping parts of the clusters.
使用可穿戴传感器的数据流进行人类活动识别(HAR)具有挑战性,因为数据维度高、存在噪声,并且在无监督设置中缺乏标记数据。我们之前的工作证明,在模拟数据集上取得了最优性能的传统聚类模型,在时间序列数值传感器数据上表现不佳。本文探索了不同的自动编码器(AE)架构,以从流式HAR数据集中提取维度降低的潜在特征,然后使用聚类模型对其进行聚类,以识别不同的活动模式。由于普通自动编码器在从时空时间序列传感器数据中学习区分数据模式方面存在不足,我们在多个设计阶段将普通自动编码器与卷积层、长短期记忆(LSTM)层以及卷积和LSTM层的组合相结合。我们应用监督学习来训练一个优越的时空特征提取自动编码器模型。使用经过训练的自动编码器提取的数据特征,我们采用无监督学习方法训练一个聚类模型。我们的端到端集成混合卷积自动编码器+长短期记忆特征提取器和K均值聚类模型,在MobiAct和UCI HAR数据集的归一化互信息(NMI)和调整兰德指数(ARI)分数方面,实现了高达0.99的最优聚类准确率,与之前的方法相比,聚类性能提高了50%以上。通过严格的实验和先进的数据预处理方法,实现了进一步的改进。我们还展示了聚类的可视化结果,它解释了聚类重叠部分中的过渡活动模式。