Wang Longguang, Guo Yulan, Wang Yingqian, Dong Xiaoyu, Xu Qingyu, Yang Jungang, An Wei
IEEE Trans Pattern Anal Mach Intell. 2025 Jan;47(1):1-18. doi: 10.1109/TPAMI.2024.3471571. Epub 2024 Dec 4.
Restoration tasks in low-level vision aim to restore high-quality (HQ) data from their low-quality (LQ) observations. To circumvents the difficulty of acquiring paired data in real scenarios, unpaired approaches that aim to restore HQ data solely on unpaired data are drawing increasing interest. Since restoration tasks are tightly coupled with the degradation model, unknown and highly diverse degradations in real scenarios make learning from unpaired data quite challenging. In this paper, we propose a degradation representation learning scheme to address this challenge. By learning to distinguish various degradations in the representation space, our degradation representations can extract implicit degradation information in an unsupervised manner. Moreover, to handle diverse degradations, we develop degradation-aware (DA) convolutions with flexible adaption to various degradations to fully exploit the degrdation information in the learned representations. Based on our degradation representations and DA convolutions, we introduce a generic framework for unpaired restoration tasks. Based on our framework, we propose UnIRnet and UnPRnet for unpaired image and point cloud restoration tasks, respectively. It is demonstrated that our degradation representation learning scheme can extract discriminative representations to obtain accurate degradation information. Experiments on unpaired image and point cloud restoration tasks show that our UnIRnet and UnPRnet achieve state-of-the-art performance.
低级别视觉中的恢复任务旨在从低质量(LQ)观测中恢复高质量(HQ)数据。为了规避在实际场景中获取配对数据的困难,旨在仅根据未配对数据恢复HQ数据的未配对方法正引起越来越多的关注。由于恢复任务与退化模型紧密相关,实际场景中未知且高度多样的退化使得从未配对数据中学习颇具挑战性。在本文中,我们提出一种退化表示学习方案来应对这一挑战。通过在表示空间中学习区分各种退化,我们的退化表示能够以无监督方式提取隐含的退化信息。此外,为了处理多样的退化,我们开发了具有灵活适应各种退化能力的退化感知(DA)卷积,以充分利用所学表示中的退化信息。基于我们的退化表示和DA卷积,我们引入了一个用于未配对恢复任务的通用框架。基于我们的框架,我们分别提出了用于未配对图像恢复任务的UnIRnet和用于未配对点云恢复任务的UnPRnet。实验表明,我们的退化表示学习方案能够提取有区分性的表示以获得准确的退化信息。在未配对图像和点云恢复任务上的实验表明,我们的UnIRnet和UnPRnet取得了当前最优的性能。