Suppr超能文献

学习用于无监督盲光声层析成像图像恢复的空间可变退化。

Learning spatially variant degradation for unsupervised blind photoacoustic tomography image restoration.

作者信息

Tang Kaiyi, Zhang Shuangyang, Wang Yang, Zhang Xiaoming, Liu Zhenyang, Liang Zhichao, Wang Huafeng, Chen Lingjian, Chen Wufan, Qi Li

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China.

Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China.

出版信息

Photoacoustics. 2023 Jul 20;32:100536. doi: 10.1016/j.pacs.2023.100536. eCollection 2023 Aug.

Abstract

Photoacoustic tomography (PAT) images contain inherent distortions due to the imaging system and heterogeneous tissue properties. Improving image quality requires the removal of these system distortions. While model-based approaches and data-driven techniques have been proposed for PAT image restoration, achieving accurate and robust image recovery remains challenging. Recently, deep-learning-based image deconvolution approaches have shown promise for image recovery. However, PAT imaging presents unique challenges, including spatially varying resolution and the absence of ground truth data. Consequently, there is a pressing need for a novel learning strategy specifically tailored for PAT imaging. Herein, we propose a configurable network model named Deep hybrid Image-PSF Prior (DIPP) that builds upon the physical image degradation model of PAT. DIPP is an unsupervised and deeply learned network model that aims to extract the ideal PAT image from complex system degradation. Our DIPP framework captures the degraded information solely from the acquired PAT image, without relying on ground truth or labeled data for network training. Additionally, we can incorporate the experimentally measured Point Spread Functions (PSFs) of the specific PAT system as a reference to further enhance performance. To evaluate the algorithm's effectiveness in addressing multiple degradations in PAT, we conduct extensive experiments using simulation images, publicly available datasets, phantom images, and in vivo small animal imaging data. Comparative analyses with classical analytical methods and state-of-the-art deep learning models demonstrate that our DIPP approach achieves significantly improved restoration results in terms of image details and contrast.

摘要

光声断层扫描(PAT)图像由于成像系统和组织特性的异质性而存在固有失真。提高图像质量需要消除这些系统失真。虽然已经提出了基于模型的方法和数据驱动技术用于PAT图像恢复,但实现准确且稳健的图像恢复仍然具有挑战性。最近,基于深度学习的图像反卷积方法在图像恢复方面显示出了前景。然而,PAT成像存在独特的挑战,包括空间变化的分辨率和缺乏真实数据。因此,迫切需要一种专门为PAT成像量身定制的新颖学习策略。在此,我们提出了一种名为深度混合图像-点扩散函数先验(DIPP)的可配置网络模型,该模型基于PAT的物理图像退化模型构建。DIPP是一种无监督的深度学习网络模型,旨在从复杂的系统退化中提取理想的PAT图像。我们的DIPP框架仅从采集到的PAT图像中捕获退化信息,而不依赖真实数据或标记数据进行网络训练。此外,我们可以将特定PAT系统的实验测量点扩散函数(PSF)作为参考纳入,以进一步提高性能。为了评估该算法在解决PAT中的多种退化问题方面的有效性,我们使用模拟图像、公开可用数据集、体模图像和体内小动物成像数据进行了广泛的实验。与经典分析方法和最新深度学习模型的对比分析表明,我们的DIPP方法在图像细节和对比度方面实现了显著改善的恢复结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f9e/10413197/cc561fc087f1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验