文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过生物信息学分析探索缺血性脑卒中与阻塞性睡眠呼吸暂停的常见生物标志物。

Exploring common biomarkers of ischemic stroke and obstructive sleep apnea through bioinformatics analysis.

机构信息

Rehabilitation Department, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, P.R. China.

School of Acupuncture-Moxibustion and Tuina, Shanghai University of Chinese Medicine, Shanghai, P.R. China.

出版信息

PLoS One. 2024 Oct 30;19(10):e0312013. doi: 10.1371/journal.pone.0312013. eCollection 2024.


DOI:10.1371/journal.pone.0312013
PMID:39475897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11524449/
Abstract

BACKGROUND: Clinical observations have shown that many patients with ischemic stroke (IS) have a history of obstructive sleep apnea (OSA) both before and after the stroke's onset, suggesting potential underlying connections and shared comorbid mechanisms between the two conditions. The aim of this study is to identify the genetic characteristics of OSA patients who develop IS and to establish a reliable disease diagnostic model to assess the risk of IS in OSA patients. METHODS: We selected IS and OSA datasets from the Gene Expression Omnibus (GEO) database as training sets. Core genes were identified using the Limma package, Weighted Gene Co-expression Network Analysis (WGCNA), and machine learning algorithms. Gene Set Variation Analysis (GSVA) was conducted for pathway enrichment analysis, while single-sample gene set enrichment analysis (ssGSEA) was employed for immune infiltration analysis. Finally, a diagnostic model was developed using Least Absolute Shrinkage and Selection Operator (LASSO) regression, with its diagnostic efficacy validated using receiver operating characteristic (ROC) curves across two independent validation sets. RESULTS: The results revealed that differential analysis and machine learning identified two common genes, TM9SF2 and CCL8, shared between IS and OSA. Additionally, seven signaling pathways were found to be commonly upregulated in both conditions. Immune infiltration analysis demonstrated a significant decrease in monocyte levels, with TM9SF2 showing a negative correlation and CCL8 showing a positive correlation with monocytes. The diagnostic model we developed exhibited excellent predictive value in the validation set. CONCLUSIONS: In summary, two immune-related core genes, TM9SF2 and CCL8, were identified as common to both IS and OSA. The diagnostic model developed based on these genes may be used to predict the risk of IS in OSA patients.

摘要

背景:临床观察表明,许多缺血性中风(IS)患者在中风发作前后均有阻塞性睡眠呼吸暂停(OSA)病史,提示这两种疾病之间存在潜在的联系和共同的合并机制。本研究旨在确定发生 IS 的 OSA 患者的遗传特征,并建立可靠的疾病诊断模型,以评估 OSA 患者发生 IS 的风险。

方法:我们从基因表达综合数据库(GEO)中选择 IS 和 OSA 数据集作为训练集。使用 Limma 包、加权基因共表达网络分析(WGCNA)和机器学习算法确定核心基因。进行基因集变异分析(GSVA)进行通路富集分析,而单样本基因集富集分析(ssGSEA)用于免疫浸润分析。最后,使用最小绝对收缩和选择算子(LASSO)回归开发诊断模型,并使用两个独立验证集的接收器操作特征(ROC)曲线验证其诊断效果。

结果:结果表明,差异分析和机器学习确定了 IS 和 OSA 之间共有的两个常见基因,TM9SF2 和 CCL8。此外,还发现了七个信号通路在两种情况下均上调。免疫浸润分析表明单核细胞水平显著降低,TM9SF2 与单核细胞呈负相关,CCL8 与单核细胞呈正相关。我们开发的诊断模型在验证集中表现出出色的预测价值。

结论:总之,确定了两个与免疫相关的核心基因,TM9SF2 和 CCL8,它们是 IS 和 OSA 的共同特征。基于这些基因开发的诊断模型可用于预测 OSA 患者发生 IS 的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/18418c8b428a/pone.0312013.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/f6e38c2053cd/pone.0312013.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/fb0e2f3c66be/pone.0312013.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/eaa502f0ef49/pone.0312013.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/4cb83cd55c73/pone.0312013.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/329d21c8eb4e/pone.0312013.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/c92014bd6cc1/pone.0312013.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/18418c8b428a/pone.0312013.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/f6e38c2053cd/pone.0312013.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/fb0e2f3c66be/pone.0312013.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/eaa502f0ef49/pone.0312013.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/4cb83cd55c73/pone.0312013.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/329d21c8eb4e/pone.0312013.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/c92014bd6cc1/pone.0312013.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd3/11524449/18418c8b428a/pone.0312013.g007.jpg

相似文献

[1]
Exploring common biomarkers of ischemic stroke and obstructive sleep apnea through bioinformatics analysis.

PLoS One. 2024

[2]
Identification of novel biomarkers in obstructive sleep apnea integrated bioinformatics analysis and experimental validation.

PeerJ. 2023

[3]
Exploration of the shared diagnostic genes and mechanisms between periodontitis and primary Sjögren's syndrome by integrated comprehensive bioinformatics analysis and machine learning.

Int Immunopharmacol. 2024-11-15

[4]
Exploring shared pathways and the shared biomarker ERRFI1 in Obstructive sleep apnoea and atherosclerosis using integrated bioinformatics analysis.

Sci Rep. 2023-9-12

[5]
Exploration of effective biomarkers for venous thrombosis embolism in Behçet's disease based on comprehensive bioinformatics analysis.

Sci Rep. 2024-7-10

[6]
Exploring the pathogenesis linking primary aldosteronism and obstructive sleep apnea via bioinformatic analysis.

Medicine (Baltimore). 2024-9-6

[7]
Identification of diagnostic genes and drug prediction in metabolic syndrome-associated rheumatoid arthritis by integrated bioinformatics analysis, machine learning, and molecular docking.

Front Immunol. 2024

[8]
Exosome-related gene identification and diagnostic model construction in hepatic ischemia-reperfusion injury.

Sci Rep. 2024-9-28

[9]
Identification of diagnostic candidate genes in COVID-19 patients with sepsis.

Immun Inflamm Dis. 2024-10

[10]
The PANoptosis-related hippocampal molecular subtypes and key biomarkers in Alzheimer's disease patients.

Sci Rep. 2024-10-11

本文引用的文献

[1]
Association of modifiable risk factors with obstructive sleep apnea: a Mendelian randomization study.

Aging (Albany NY). 2023-12-11

[2]
Analysis of the relationship between sleep-related disorder and systemic immune-inflammation index in the US population.

BMC Psychiatry. 2023-10-24

[3]
Statins Restore Endothelial Protection against Complement Activity in Obstructive Sleep Apnea: A Randomized Clinical Trial.

Ann Am Thorac Soc. 2023-7

[4]
Post-stroke sleep disturbance and recurrent cardiovascular and cerebrovascular events: A systematic review and meta-analysis.

Sleep Med. 2023-4

[5]
Monocyte, neutrophil, and whole blood transcriptome dynamics following ischemic stroke.

BMC Med. 2023-2-20

[6]
Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8 T lymphocytes.

Neuron. 2023-3-1

[7]
Beneficial effects of CCL8 inhibition at lipopolysaccharide-induced lung injury.

iScience. 2022-12-22

[8]
Level of urinary catecholamine in children with Sleep Disordered Breathing: A systematic review and meta-analysis.

Sleep Med. 2022-12

[9]
Iron accelerates Fusobacterium nucleatum-induced CCL8 expression in macrophages and is associated with colorectal cancer progression.

JCI Insight. 2022-11-8

[10]
Blocking CCL8-CCR8-Mediated Early Allograft Inflammation Improves Kidney Transplant Function.

J Am Soc Nephrol. 2022-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索