Suppr超能文献

用蒙特卡罗预测编码学习感觉输入的概率分布。

Learning probability distributions of sensory inputs with Monte Carlo predictive coding.

机构信息

MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.

Department of Computer Science, ETH Zurich, Zürich, Switzerland.

出版信息

PLoS Comput Biol. 2024 Oct 30;20(10):e1012532. doi: 10.1371/journal.pcbi.1012532. eCollection 2024 Oct.

Abstract

It has been suggested that the brain employs probabilistic generative models to optimally interpret sensory information. This hypothesis has been formalised in distinct frameworks, focusing on explaining separate phenomena. On one hand, classic predictive coding theory proposed how the probabilistic models can be learned by networks of neurons employing local synaptic plasticity. On the other hand, neural sampling theories have demonstrated how stochastic dynamics enable neural circuits to represent the posterior distributions of latent states of the environment. These frameworks were brought together by variational filtering that introduced neural sampling to predictive coding. Here, we consider a variant of variational filtering for static inputs, to which we refer as Monte Carlo predictive coding (MCPC). We demonstrate that the integration of predictive coding with neural sampling results in a neural network that learns precise generative models using local computation and plasticity. The neural dynamics of MCPC infer the posterior distributions of the latent states in the presence of sensory inputs, and can generate likely inputs in their absence. Furthermore, MCPC captures the experimental observations on the variability of neural activity during perceptual tasks. By combining predictive coding and neural sampling, MCPC can account for both sets of neural data that previously had been explained by these individual frameworks.

摘要

有人认为,大脑利用概率生成模型来最优地解释感官信息。这一假说已经在不同的框架中得到了形式化,这些框架侧重于解释不同的现象。一方面,经典的预测编码理论提出了如何通过利用局部突触可塑性的神经元网络来学习概率模型。另一方面,神经采样理论已经证明了随机动力学如何使神经回路能够表示环境中潜在状态的后验分布。变分滤波将神经采样引入预测编码,将这些框架结合在一起。在这里,我们考虑了一种针对静态输入的变分滤波变体,我们称之为蒙特卡罗预测编码(MCPC)。我们证明,将预测编码与神经采样相结合,会产生一个使用局部计算和可塑性来学习精确生成模型的神经网络。MCPC 的神经动力学在存在感官输入的情况下推断潜在状态的后验分布,并在没有感官输入的情况下生成可能的输入。此外,MCPC 捕获了在感知任务期间神经活动变化的实验观察结果。通过结合预测编码和神经采样,MCPC 可以解释以前由这些单独框架解释的两组神经数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验