Suppr超能文献

通过预测编码实现的联想记忆。

Associative Memories via Predictive Coding.

作者信息

Salvatori Tommaso, Song Yuhang, Hong Yujian, Sha Lei, Frieder Simon, Xu Zhenghua, Bogacz Rafal, Lukasiewicz Thomas

机构信息

Department of Computer Science, University of Oxford, UK.

MRC Brain Network Dynamics Unit, University of Oxford, UK.

出版信息

Adv Neural Inf Process Syst. 2021 Dec 1;34:3874-3886.

Abstract

Associative memories in the brain receive and store patterns of activity registered by the sensory neurons, and are able to retrieve them when necessary. Due to their importance in human intelligence, computational models of associative memories have been developed for several decades now. In this paper, we present a novel neural model for realizing associative memories, which is based on a hierarchical generative network that receives external stimuli via sensory neurons. It is trained using predictive coding, an error-based learning algorithm inspired by information processing in the cortex. To test the model's capabilities, we perform multiple retrieval experiments from both corrupted and incomplete data points. In an extensive comparison, we show that this new model outperforms in retrieval accuracy and robustness popular associative memory models, such as autoencoders trained via backpropagation, and modern Hopfield networks. In particular, in completing partial data points, our model achieves remarkable results on natural image datasets, such as ImageNet, with a surprisingly high accuracy, even when only a tiny fraction of pixels of the original images is presented. Our model provides a plausible framework to study learning and retrieval of memories in the brain, as it closely mimics the behavior of the hippocampus as a memory index and generative model.

摘要

大脑中的联想记忆接收并存储由感觉神经元记录的活动模式,并能够在必要时检索它们。由于它们在人类智能中的重要性,联想记忆的计算模型已经发展了几十年。在本文中,我们提出了一种用于实现联想记忆的新型神经模型,它基于一个通过感觉神经元接收外部刺激的分层生成网络。它使用预测编码进行训练,这是一种受皮层信息处理启发的基于误差的学习算法。为了测试该模型的能力,我们从损坏和不完整的数据点进行了多次检索实验。在广泛的比较中,我们表明这个新模型在检索准确性和鲁棒性方面优于流行的联想记忆模型,如通过反向传播训练的自动编码器和现代霍普菲尔德网络。特别是,在完成部分数据点时,我们的模型在自然图像数据集(如图像网)上取得了显著成果,即使只呈现原始图像的极小部分像素,也能达到惊人的高精度。我们的模型提供了一个合理的框架来研究大脑中记忆的学习和检索,因为它紧密模仿了海马体作为记忆索引和生成模型的行为。

相似文献

6
Learning associative memories by error backpropagation.通过误差反向传播学习关联记忆。
IEEE Trans Neural Netw. 2011 Mar;22(3):347-55. doi: 10.1109/TNN.2010.2099239. Epub 2010 Dec 23.
9
The memory systems of the human brain and generative artificial intelligence.人类大脑的记忆系统与生成式人工智能。
Heliyon. 2024 May 24;10(11):e31965. doi: 10.1016/j.heliyon.2024.e31965. eCollection 2024 Jun 15.

引用本文的文献

3
Learning probability distributions of sensory inputs with Monte Carlo predictive coding.用蒙特卡罗预测编码学习感觉输入的概率分布。
PLoS Comput Biol. 2024 Oct 30;20(10):e1012532. doi: 10.1371/journal.pcbi.1012532. eCollection 2024 Oct.
6
Predictive coding with spiking neurons and feedforward gist signaling.基于脉冲神经元和前馈主旨信号的预测编码。
Front Comput Neurosci. 2024 Apr 12;18:1338280. doi: 10.3389/fncom.2024.1338280. eCollection 2024.
8
Fast adaptation to rule switching using neuronal surprise.利用神经元惊讶实现快速规则切换适应。
PLoS Comput Biol. 2024 Feb 20;20(2):e1011839. doi: 10.1371/journal.pcbi.1011839. eCollection 2024 Feb.
10
The storage capacity of a directed graph and nodewise autonomous, ubiquitous learning.有向图的存储容量与节点自主、普适学习。
Front Comput Neurosci. 2023 Oct 19;17:1254355. doi: 10.3389/fncom.2023.1254355. eCollection 2023.

本文引用的文献

4
Overparameterized neural networks implement associative memory.过参数化神经网络实现了联想记忆。
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27162-27170. doi: 10.1073/pnas.2005013117. Epub 2020 Oct 16.
5
Prediction and memory: A predictive coding account.预测与记忆:预测编码观点。
Prog Neurobiol. 2020 Sep;192:101821. doi: 10.1016/j.pneurobio.2020.101821. Epub 2020 May 21.
6
Unsupervised learning by competing hidden units.无监督竞争型隐单元学习。
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7723-7731. doi: 10.1073/pnas.1820458116. Epub 2019 Mar 29.
8
Theories of Error Back-Propagation in the Brain.大脑中的误差反向传播理论。
Trends Cogn Sci. 2019 Mar;23(3):235-250. doi: 10.1016/j.tics.2018.12.005. Epub 2019 Jan 28.
9
Generative Predictive Codes by Multiplexed Hippocampal Neuronal Tuplets.通过多路复用海马神经元三聚体生成预测性代码。
Neuron. 2018 Sep 19;99(6):1329-1341.e6. doi: 10.1016/j.neuron.2018.07.047. Epub 2018 Aug 23.
10
The hippocampus as a predictive map.海马体作为一个预测图。
Nat Neurosci. 2017 Nov;20(11):1643-1653. doi: 10.1038/nn.4650. Epub 2017 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验