Suppr超能文献

将历史数据中的信息整合到流感预测的机械模型中。

Integrating information from historical data into mechanistic models for influenza forecasting.

机构信息

Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000 CNRS, Paris, France.

Infectious Diseases Department, Santé publique France, Saint-Maurice, France.

出版信息

PLoS Comput Biol. 2024 Oct 30;20(10):e1012523. doi: 10.1371/journal.pcbi.1012523. eCollection 2024 Oct.

Abstract

Seasonal influenza causes significant annual morbidity and mortality worldwide. In France, it is estimated that, on average, 2 million individuals consult their GP for influenza-like-illness (ILI) every year. Traditionally, mathematical models used for epidemic forecasting can either include parameters capturing the infection process (mechanistic or compartmental models) or rely on time series analysis approaches that do not make mechanistic assumptions (statistical or phenomenological models). While the latter make extensive use of past epidemic data, mechanistic models are usually independently initialized in each season. As a result, forecasts from such models can contain trajectories that are vastly different from past epidemics. We developed a mechanistic model that takes into account epidemic data from training seasons when producing forecasts. The parameters of the model are estimated via a first particle filter running on the observed data. A second particle filter is then used to produce forecasts compatible with epidemic trajectories from the training set. The model was calibrated and tested on 35 years' worth of surveillance data from the French Sentinelles Network, representing the weekly number of patients consulting for ILI over the period 1985-2019. Our results show that the new method improves upon standard mechanistic approaches. In particular, when retrospectively tested on the available data, our model provides increased accuracy for short-term forecasts (from one to four weeks into the future) and peak timing and intensity. Our new approach for epidemic forecasting allows the integration of key strengths of the statistical approach into the mechanistic modelling framework and represents an attempt to provide accurate forecasts by making full use of the rich surveillance dataset collected in France since 1985.

摘要

季节性流感在全球范围内导致了大量的发病率和死亡率。在法国,据估计,平均每年有 200 万人因流感样疾病(ILI)咨询他们的全科医生。传统上,用于预测流行的数学模型可以包括捕捉感染过程的参数(机械或分区模型),或者依赖于不进行机械假设的时间序列分析方法(统计或现象学模型)。虽然后者广泛利用了过去的流行数据,但机械模型通常在每个季节都独立初始化。因此,这些模型的预测可能包含与过去的流行截然不同的轨迹。我们开发了一种机械模型,该模型在进行预测时考虑了训练季节的流行数据。模型的参数通过在观测数据上运行的第一个粒子滤波器进行估计。然后,第二个粒子滤波器用于生成与训练集的流行轨迹兼容的预测。该模型在法国 Sentinelles 网络的 35 年监测数据上进行了校准和测试,代表了 1985-2019 年期间每周因 ILI 就诊的患者数量。我们的结果表明,新方法优于标准的机械方法。特别是,当在可用数据上进行回顾性测试时,我们的模型提高了短期预测(未来一到四周)的准确性以及峰值时间和强度。我们的新流行预测方法允许将统计方法的关键优势集成到机械建模框架中,并通过充分利用自 1985 年以来在法国收集的丰富监测数据集来提供准确的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验