Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, 75015 Paris, France.
Direction des Maladies Infectieuses, Santé publique France, 94415 Saint Maurice, France.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2103302119. doi: 10.1073/pnas.2103302119. Epub 2022 Apr 27.
Short-term forecasting of the COVID-19 pandemic is required to facilitate the planning of COVID-19 health care demand in hospitals. Here, we evaluate the performance of 12 individual models and 19 predictors to anticipate French COVID-19-related health care needs from September 7, 2020, to March 6, 2021. We then build an ensemble model by combining the individual forecasts and retrospectively test this model from March 7, 2021, to July 6, 2021. We find that the inclusion of early predictors (epidemiological, mobility, and meteorological predictors) can halve the rms error for 14-d–ahead forecasts, with epidemiological and mobility predictors contributing the most to the improvement. On average, the ensemble model is the best or second-best model, depending on the evaluation metric. Our approach facilitates the comparison and benchmarking of competing models through their integration in a coherent analytical framework, ensuring that avenues for future improvements can be identified.
短期预测 COVID-19 大流行有助于规划医院 COVID-19 医疗需求。在此,我们评估了 12 个单一模型和 19 个预测因子的性能,以预测 2020 年 9 月 7 日至 2021 年 3 月 6 日期间法国与 COVID-19 相关的医疗需求。然后,我们通过组合单个预测构建了一个集成模型,并从 2021 年 3 月 7 日回溯性测试该模型至 2021 年 7 月 6 日。我们发现,包含早期预测因子(流行病学、流动性和气象预测因子)可以将 14 天预测的均方根误差降低一半,其中流行病学和流动性预测因子对改进的贡献最大。平均而言,集成模型是最佳或第二最佳模型,具体取决于评估指标。我们的方法通过将竞争模型集成到一个连贯的分析框架中,促进了模型的比较和基准测试,从而确保可以确定未来改进的途径。