School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
J Therm Biol. 2024 Oct;125:103936. doi: 10.1016/j.jtherbio.2024.103936. Epub 2024 Oct 26.
Extensive research has been conducted on the manufacturing of nano ferrites, and their use in magnetic hyperthermia therapy has shown promising results in cancer treatment. This study aims primarily to provide an overview of the latest developments in the synthesis of magnetic nanoparticles (MNPs) for the treatment of hyperthermia. Magnetic nanoparticles are biocompatible and have a stable magnetic state, nano ferrites have become recognized as apex thermoseeds in biomedical applications, specifically for the treatment of magnetic hyperthermia. Employing dopant materials, biocompatible overlay, and preparation techniques, one may study the effectiveness of nano ferrites. Furthermore, specific requirements need to be met for using nano ferrites in cancer treatments like magnetic hyperthermia. These include low toxicity, biocompatibility, a higher specific absorption rate, a shorter time to reach the targeted hyperthermia temperature, crystalline size within the biological radius, and a lower dose of the nano ferrite. A potential resolution involves identifying the limitations and proposing enhanced nanocomposite materials that amplify their magnetic characteristics via a biocompatible overlay, all while optimizing the effectiveness and functioning of magnetic nanoferrites. To increase the effectiveness of ferrite nanoparticles in treating hyperthermia, this study will figure out their constraints and offer solutions for more effective ferrite-based nanocomposites that may prove to be a viable therapy option for cancer in the future.
已经对纳米铁氧体的制造进行了广泛的研究,并且它们在磁热疗中的应用在癌症治疗中显示出了有前景的结果。本研究旨在主要提供用于治疗热疗的磁性纳米粒子(MNP)合成的最新进展概述。磁性纳米粒子具有生物相容性和稳定的磁状态,纳米铁氧体已被认为是生物医学应用中尖峰热种子,特别是用于磁热疗。通过使用掺杂材料、生物相容性覆盖层和制备技术,可以研究纳米铁氧体的有效性。此外,在癌症治疗(如磁热疗)中使用纳米铁氧体需要满足一些特定要求。这些要求包括低毒性、生物相容性、更高的比吸收率、达到目标热疗温度的更短时间、生物半径内的结晶尺寸和更低剂量的纳米铁氧体。一种潜在的解决方案涉及确定限制并提出增强的纳米复合材料,通过生物相容性覆盖层放大其磁性特性,同时优化磁性纳米铁氧体的有效性和功能。为了提高铁氧体纳米粒子在治疗热疗中的效果,本研究将确定它们的限制,并为更有效的基于铁氧体的纳米复合材料提供解决方案,这些复合材料可能成为未来癌症治疗的可行选择。