Suppr超能文献

通过双鏻催化的开环过程实现的选择性单氘代。

Selective monodeuteration enabled by bisphosphonium catalyzed ring opening processes.

作者信息

Xu Yuanli, Chen Wenlong, Pu Ruihua, Ding Jia, An Qing, Yang Yi, Liu Weimin, Zuo Zhiwei

机构信息

Innovation Center for Chenguang High Performance Fluorine Material, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, 643000, Zigong, China.

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China.

出版信息

Nat Commun. 2024 Oct 30;15(1):9366. doi: 10.1038/s41467-024-53728-x.

Abstract

The selective incorporation of a deuterium atom into small molecules with high selectivity is highly valuable for medical and chemical research. Unfortunately, this remains challenging due to the complete deuteration caused by commonly used hydrogen isotope exchange strategies. We report the development of a photocatalytic selective monodeuteration protocol utilizing C-C bond as the unconventional functional handle. The synergistic combination of radical-mediated C-C bond scission and deuterium atom transfer processes enables the effective constructions of benzylic CDH moieties with high selectivity for monodeuteration. The combinational use of a bisphosphonium photocatalyst, thiol catalyst, and CHOD deuteration agent provides operationally simple conditions for photocatalytic monodeuteration. Moreover, the photoinduced electron transfer process of the bisphosphonium photocatalyst is elucidated through a series of spectroscopy experiments, identifying a peculiar back electron transfer process that can be regulated by subsequent nucleophilic additions.

摘要

将氘原子以高选择性掺入小分子对于医学和化学研究具有极高的价值。不幸的是,由于常用的氢同位素交换策略会导致完全氘化,这一过程仍然具有挑战性。我们报道了一种利用C-C键作为非常规功能手柄的光催化选择性单氘化方法的开发。自由基介导的C-C键断裂和氘原子转移过程的协同组合能够有效地构建具有高单氘化选择性的苄基CDH部分。双鏻光催化剂、硫醇催化剂和CHOD氘化剂的组合使用为光催化单氘化提供了操作简单的条件。此外,通过一系列光谱实验阐明了双鏻光催化剂的光诱导电子转移过程,确定了一种特殊的反向电子转移过程,该过程可通过随后的亲核加成进行调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7185/11526102/6e41ee83f474/41467_2024_53728_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验