Suppr超能文献

通过与DO进行H/D交换实现无光催化剂的光化学氘代

Photocatalyst-free photochemical deuteration via H/D exchange with DO.

作者信息

Meng Ying, Shu Bei, Zhang Jing, Rao Heng, Zhou Ziyuan, Wang Zhiyuan, Liu Zhongyi, Liu Kangdong, Zhang Yueteng, Wang Wei

机构信息

State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.

College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China.

出版信息

Nat Commun. 2025 Jul 22;16(1):6744. doi: 10.1038/s41467-025-61641-0.

Abstract

Deuterium labeling is increasingly important across scientific fields, from drug development to materials engineering, but current methods often require expensive catalysts. Here we demonstrate a simple, photocatalyst-free approach for incorporating deuterium into organic molecules using visible light. By employing common thiol compounds under mild blue-light irradiation (380-420 nm), we successfully modify two key chemical groups (formyl and α-amino) with high efficiency (up to 96% deuterium incorporation). This method eliminates the need for specialized PCs, significantly reducing costs and complexity. Surprisingly, we find that the system generates reactive intermediates (thiyl radicals and hydrogen atoms) through previously unrecognized light-activated pathways. These discoveries challenge conventional assumptions about photochemical deuteration and offer practical advantages for both laboratory research and industrial-scale production. Our results provide a more sustainable and scalable route to deuterated compounds while opening possibilities for light-driven chemistry without expensive catalysts. This work advances isotope labeling technology and suggests broader applications for simple, light-powered reactions in chemical synthesis.

摘要

从药物开发到材料工程,氘标记在各个科学领域的重要性日益凸显,但目前的方法通常需要昂贵的催化剂。在此,我们展示了一种简单的、无需光催化剂的方法,可利用可见光将氘引入有机分子。通过在温和的蓝光照射(380 - 420纳米)下使用常见的硫醇化合物,我们成功地高效修饰了两个关键化学基团(甲酰基和α - 氨基)(氘掺入率高达96%)。该方法无需专门的光催化剂,显著降低了成本和复杂性。令人惊讶的是,我们发现该体系通过此前未被认识的光激活途径生成反应中间体(硫自由基和氢原子)。这些发现挑战了关于光化学氘化的传统假设,并为实验室研究和工业规模生产都提供了实际优势。我们的结果为氘代化合物提供了一条更可持续、更具扩展性的途径,同时为无昂贵催化剂的光驱动化学开辟了可能性。这项工作推动了同位素标记技术的发展,并暗示了简单的光驱动反应在化学合成中的更广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验