Huang Zheao, Wang Zhouzhou, Rabl Hannah, Naghdi Shaghayegh, Zhou Qiancheng, Schwarz Sabine, Apaydin Dogukan Hazar, Yu Ying, Eder Dominik
Institute of Materials Chemistry, Technische Universität Wien, 1060, Vienna, Austria.
Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, 430079, Wuhan, China.
Nat Commun. 2024 Oct 30;15(1):9393. doi: 10.1038/s41467-024-53385-0.
The current limitations in utilizing metal-organic frameworks for (photo)electrochemical applications stem from their diminished electrochemical stability. In our study, we illustrate a method to bolster the activity and stability of (photo)electrocatalytically active metal-organic frameworks through ligand engineering. We synthesize four distinct mixed-ligand versions of zeolitic imidazolate framework-67, and conduct a comprehensive investigation into the structural evolution and self-reconstruction during electrocatalytic oxygen evolution reactions. In contrast to the conventional single-ligand ZIF, where the framework undergoes a complete transformation into CoOOH via a stepwise oxidation, the ligand-engineered zeolitic imidazolate frameworks manage to preserve the fundamental framework structure by in-situ forming a protective cobalt (oxy)hydroxide layer on the surface. This surface reconstruction facilitates both conductivity and catalytic activity by one order of magnitude and considerably enhances the (photo)electrochemical stability. This work highlights the vital role of ligand engineering for designing advanced and stable metal-organic frameworks for photo- and electrocatalysis.
目前在将金属有机框架用于(光)电化学应用方面存在的局限性源于其电化学稳定性的降低。在我们的研究中,我们阐述了一种通过配体工程来增强(光)电催化活性金属有机框架的活性和稳定性的方法。我们合成了四种不同的混合配体版本的沸石咪唑酯骨架-67,并对电催化析氧反应过程中的结构演变和自重构进行了全面研究。与传统的单配体沸石咪唑酯骨架不同,在传统单配体沸石咪唑酯骨架中,骨架通过逐步氧化完全转变为CoOOH,而经过配体工程的沸石咪唑酯骨架通过在表面原位形成一层保护性的氢氧化钴(氧)层,成功地保留了基本的骨架结构。这种表面重构将导电性和催化活性提高了一个数量级,并显著增强了(光)电化学稳定性。这项工作突出了配体工程在设计用于光催化和电催化的先进且稳定的金属有机框架方面的关键作用。
ACS Appl Mater Interfaces. 2024-2-14
J Colloid Interface Sci. 2025-1-15
Nanoscale. 2014-9-7
ACS Appl Mater Interfaces. 2025-4-9
Molecules. 2025-2-20
Proc Natl Acad Sci U S A. 2023-11-28
J Colloid Interface Sci. 2024-1
J Am Chem Soc. 2023-8-9
ACS Appl Mater Interfaces. 2023-3-22