Suppr超能文献

来自最低未占据分子轨道的精确分子识别。

Accurate molecular recognition from the lowest unoccupied molecular orbital.

作者信息

Zhou Xuehua, Yang Shixing, Han Chao

机构信息

Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, Anhui Key Laboratory of Functional Coordination Compounds, Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center of Anhui Province, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, People's Republic of China.

The Second Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310000, China.

出版信息

Sci Rep. 2024 Oct 30;14(1):26125. doi: 10.1038/s41598-024-77605-1.

Abstract

The quantification of the lowest unoccupied molecular orbital level (LUMO) for molecular semiconductors is of great importance, because it determines the charge transport process and hence the performances of diverse electronic devices. Unfortunately, there is always lack of a convenient technique to determine the intrinsic LUMO. This work provides a reliable electrical spectroscopy by employing an easy-operating hot electron transistor, to make an accurate measurement. By taking advantage of a novel method, named the first derivative-assisted linear fitting method, the determination of the intrinsic LUMO becomes more scientific. Here, four kinds of molecular semiconductors are selected as the research objects and the values can be precisely decided even with a quite small difference in LUMO, which demonstrate the universality and the accuracy of our method. As expected, all the measured values are highly repeatable and it further confirms that we have provided a practical technique for the LUMO detection.

摘要

对分子半导体的最低未占据分子轨道能级(LUMO)进行量化非常重要,因为它决定了电荷传输过程,进而决定了各种电子器件的性能。不幸的是,一直缺乏一种方便的技术来确定本征LUMO。这项工作通过使用易于操作的热电子晶体管提供了一种可靠的电光谱法,以进行精确测量。通过利用一种名为一阶导数辅助线性拟合方法的新方法,本征LUMO的测定变得更加科学。在这里,选择了四种分子半导体作为研究对象,即使LUMO存在很小的差异,也能精确确定其值,这证明了我们方法的通用性和准确性。正如预期的那样,所有测量值都具有高度的可重复性,这进一步证实我们为LUMO检测提供了一种实用技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06a7/11525969/b83c9c572513/41598_2024_77605_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验