Atxabal A, Arnold T, Parui S, Hutsch S, Zuccatti E, Llopis R, Cinchetti M, Casanova F, Ortmann F, Hueso L E
CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque Country, Spain.
Simbeyond B. V., 5612, AE, Eindhoven, The Netherlands.
Nat Commun. 2019 May 7;10(1):2089. doi: 10.1038/s41467-019-10114-2.
Marcus's theory of electron transfer, initially formulated six decades ago for redox reactions in solution, is now of great importance for very diverse scientific communities. The molecular scale tunability of electronic properties renders organic semiconductor materials in principle an ideal platform to test this theory. However, the demonstration of charge transfer in different Marcus regions requires a precise control over the driving force acting on the charge carriers. Here, we make use of a three-terminal hot-electron molecular transistor, which lets us access unconventional transport regimes. Thanks to the control of the injection energy of hot carriers in the molecular thin film we induce an effective negative differential resistance state that is a direct consequence of the Marcus Inverted Region.
马库斯电子转移理论最初是在六十年前为溶液中的氧化还原反应而提出的,如今对众多不同的科学领域都极为重要。电子特性在分子尺度上的可调节性,使得有机半导体材料原则上成为检验该理论的理想平台。然而,要证明在不同马库斯区域中的电荷转移,需要精确控制作用于电荷载流子的驱动力。在此,我们利用三端热电子分子晶体管,它使我们能够进入非常规的输运区域。由于对分子薄膜中热载流子注入能量的控制,我们诱导出一种有效的负微分电阻状态,这是马库斯反转区域的直接结果。