Suppr超能文献

Winsorization 极大地减少了分析人类群体样本时常用的差异表达方法中的假阳性。

Winsorization greatly reduces false positives by popular differential expression methods when analyzing human population samples.

机构信息

Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.

Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.

出版信息

Genome Biol. 2024 Oct 30;25(1):282. doi: 10.1186/s13059-024-03230-w.

Abstract

A recent study found severely inflated type I error rates for DESeq2 and edgeR, two dominant tools used for differential expression analysis of RNA-seq data. Here, we show that by properly addressing the outliers in the RNA-Seq data using winsorization, the type I error rate of DESeq2 and edgeR can be substantially reduced, and the power is comparable to Wilcoxon rank-sum test for large datasets. Therefore, as an alternative to Wilcoxon rank-sum test, they may still be applied for differential expression analysis of large RNA-Seq datasets.

摘要

最近的一项研究发现,DESeq2 和 edgeR 的 I 型错误率严重膨胀,这两种工具是用于 RNA-seq 数据差异表达分析的主要工具。在这里,我们表明,通过使用 winsorization 正确处理 RNA-Seq 数据中的异常值,可以大大降低 DESeq2 和 edgeR 的 I 型错误率,并且对于大型数据集,其功效可与 Wilcoxon 秩和检验相媲美。因此,作为 Wilcoxon 秩和检验的替代方法,它们仍可用于大型 RNA-Seq 数据集的差异表达分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f25/11523781/1607c63786d4/13059_2024_3230_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验