Suppr超能文献

回应“在半合成 RNA-seq 数据模拟中忽略归一化影响会产生人为的假阳性”和“在分析人类群体样本时,流行的差异表达方法通过峰度化极大地减少了假阳性”。

Response to "Neglecting normalization impact in semi-synthetic RNA-seq data simulation generates artificial false positives" and "Winsorization greatly reduces false positives by popular differential expression methods when analyzing human population samples".

机构信息

Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA.

Department of Statistics, Oregon State University, Corvallis, OR, 97331, USA.

出版信息

Genome Biol. 2024 Oct 30;25(1):283. doi: 10.1186/s13059-024-03232-8.

Abstract

Two correspondences raised concerns or comments about our analyses regarding exaggerated false positives found by differential expression (DE) methods. Here, we discuss the points they raise and explain why we agree or disagree with these points. We add new analysis to confirm that the Wilcoxon rank-sum test remains the most robust method compared to the other five DE methods (DESeq2, edgeR, limma-voom, dearseq, and NOISeq) in two-condition DE analyses after considering normalization and winsorization, the data preprocessing steps discussed in the two correspondences.

摘要

两段通信对我们关于差异表达 (DE) 方法发现的夸大假阳性的分析提出了关注或评论。在这里,我们讨论了他们提出的观点,并解释了我们同意或不同意这些观点的原因。我们增加了新的分析,以确认在考虑了两段通信中讨论的数据预处理步骤——归一化和 winsorization 后,Wilcoxon 秩和检验仍然是两种条件 DE 分析中最稳健的方法,优于其他五种 DE 方法(DESeq2、edgeR、limma-voom、dearseq 和 NOISeq)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3a/11526515/5fe22cd10954/13059_2024_3232_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验