Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA.
Department of Statistics, Oregon State University, Corvallis, OR, 97331, USA.
Genome Biol. 2024 Oct 30;25(1):283. doi: 10.1186/s13059-024-03232-8.
Two correspondences raised concerns or comments about our analyses regarding exaggerated false positives found by differential expression (DE) methods. Here, we discuss the points they raise and explain why we agree or disagree with these points. We add new analysis to confirm that the Wilcoxon rank-sum test remains the most robust method compared to the other five DE methods (DESeq2, edgeR, limma-voom, dearseq, and NOISeq) in two-condition DE analyses after considering normalization and winsorization, the data preprocessing steps discussed in the two correspondences.
两段通信对我们关于差异表达 (DE) 方法发现的夸大假阳性的分析提出了关注或评论。在这里,我们讨论了他们提出的观点,并解释了我们同意或不同意这些观点的原因。我们增加了新的分析,以确认在考虑了两段通信中讨论的数据预处理步骤——归一化和 winsorization 后,Wilcoxon 秩和检验仍然是两种条件 DE 分析中最稳健的方法,优于其他五种 DE 方法(DESeq2、edgeR、limma-voom、dearseq 和 NOISeq)。