Zhuo Fangping, Wang Bo, Cheng Long, Zatterin Edoardo, Jiang Tianshu, Ni Fan, Breckner Patrick, Li Yan, Guiblin Nicolas, Isaia Daniel, Luo Nengneng, Fulanovic Lovro, Molina-Luna Leopoldo, Dkhil Brahim, Chen Long-Qing, Rödel Jürgen
Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany.
Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
Adv Mater. 2024 Dec;36(52):e2413713. doi: 10.1002/adma.202413713. Epub 2024 Oct 31.
Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d*) in piezoelectric materials remains a formidable challenge for advanced actuator applications. Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arrays of ordered {100}<100> dislocations is proposed. This dislocation engineering yields an intrinsic lock-in steady-state electrostrain of 0.69% at a low field of 10 kV cm without external stress and an output strain energy density of 5.24 J cm in single-crystal BaTiO, outperforming the benchmark piezoceramics and relaxor ferroelectric single-crystals. Additionally, applying a compression stress of 6 MPa fully unlocks electrostrains exceeding 1%, yielding a remarkable d* value over 10 000 pm V and achieving a record-high strain energy density of 11.67 J cm. Optical and transmission electron microscopy, paired with laboratory and synchrotron X-ray diffraction, is employed to rationalize the observed electrostrain. Phase-field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findings present an effective and sustainable strategy for developing high-performance, lead-free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies.
对于先进的致动器应用而言,在压电材料中实现可观的电致应变以及大的有效压电应变系数(d*)仍然是一项艰巨的挑战。在此,提出了一种直接的方法,即通过策略性地设计畴结构并通过引入有序的{100}<100>位错阵列来控制畴切换,以增强这些性能。这种位错工程在10 kV/cm的低电场且无外部应力的情况下,在单晶BaTiO中产生了0.69%的本征锁定稳态电致应变,输出应变能密度为5.24 J/cm,性能优于基准压电陶瓷和弛豫铁电单晶。此外,施加6 MPa的压缩应力可完全释放超过1%的电致应变,产生超过10000 pm/V的显著d*值,并实现创纪录的11.67 J/cm的高应变能密度。利用光学显微镜和透射电子显微镜,结合实验室和同步加速器X射线衍射,来解释观察到的电致应变。相场模拟进一步阐明了带电位错对畴成核和畴切换的影响。这些发现为开发高性能无铅压电材料提供了一种有效且可持续的策略,无需额外的化学元素,为致动器技术提供了巨大潜力。