Gómez-Valadés Alba, Martínez-Tomás Rafael, García-Herranz Sara, Bjørnerud Atle, Rincón Mariano
Department of Artificial Intelligence, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
Cogni-UNED Research Group, Faculty of Psychology, UNED, Madrid, Spain.
Front Neuroinform. 2024 Oct 16;18:1378281. doi: 10.3389/fninf.2024.1378281. eCollection 2024.
Machine learning (ML) methodologies for detecting Mild Cognitive Impairment (MCI) are progressively gaining prevalence to manage the vast volume of processed information. Nevertheless, the black-box nature of ML algorithms and the heterogeneity within the data may result in varied interpretations across distinct studies. To avoid this, in this proposal, we present the design of a decision support system that integrates a machine learning model represented using the Semantic Web Rule Language (SWRL) in an ontology with specialized knowledge in neuropsychological tests, the NIO ontology. The system's ability to detect MCI subjects was evaluated on a database of 520 neuropsychological assessments conducted in Spanish and compared with other well-established ML methods. Using the coefficient to minimize false negatives, results indicate that the system performs similarly to other well-established ML methods ( = 0.830, only below bagging, = 0.832) while exhibiting other significant attributes such as explanation capability and data standardization to a common framework thanks to the ontological part. On the other hand, the system's versatility and ease of use were demonstrated with three additional use cases: evaluation of new cases even if the acquisition stage is incomplete (the case records have missing values), incorporation of a new database into the integrated system, and use of the ontology capabilities to relate different domains. This makes it a useful tool to support physicians and neuropsychologists in population-based screenings for early detection of MCI.
用于检测轻度认知障碍(MCI)的机器学习(ML)方法在处理大量信息时越来越普遍。然而,ML算法的黑箱性质以及数据的异质性可能导致不同研究之间的解释各异。为避免这种情况,在本提案中,我们展示了一种决策支持系统的设计,该系统将使用语义网规则语言(SWRL)表示的机器学习模型集成到一个本体中,并结合神经心理测试方面的专业知识,即NIO本体。该系统检测MCI受试者的能力在一个包含520项西班牙语神经心理评估的数据库上进行了评估,并与其他成熟的ML方法进行了比较。使用系数来最小化假阴性,结果表明该系统的表现与其他成熟的ML方法相似( = 0.830,仅低于装袋法, = 0.832),同时由于本体部分,还展现出其他显著特性,如解释能力和对通用框架的数据标准化。另一方面,该系统的通用性和易用性通过另外三个用例得到了证明:即使采集阶段不完整(病例记录有缺失值)也能评估新病例,将新数据库纳入集成系统,以及利用本体功能关联不同领域。这使其成为在基于人群的筛查中支持医生和神经心理学家早期检测MCI的有用工具。