Suppr超能文献

锦葵科:具有化学预防和抗癌活性的次生代谢产物的潜在来源,并得到药代动力学和药效学特征的支持。

Family Malvaceae: a potential source of secondary metabolites with chemopreventive and anticancer activities supported with pharmacokinetic and pharmacodynamic profiles.

作者信息

Sameh Salma, Elissawy Ahmed M, Al-Sayed Eman, Labib Rola M, Chang Hsueh-Wei, Yu Szu-Yin, Chang Fang-Rong, Yang Shyh-Chyun, Singab Abdel Nasser B

机构信息

Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.

Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.

出版信息

Front Pharmacol. 2024 Oct 16;15:1465055. doi: 10.3389/fphar.2024.1465055. eCollection 2024.

Abstract

INTRODUCTION

Cancer is the second most widespread cause of mortality following cardiovascular disorders, and it imposes a heavy global burden. Nowadays, herbal nutraceutical products with a plethora of bioactive metabolites represent a foundation stone for the development of promising chemopreventive and anticancer agents. Certain members of the family Malvaceae have traditionally been employed to relieve tumors. The literature concerning the chemopreventive and anticancer effects of the plant species along with the isolated cytotoxic phytometabolites was reviewed. Based on the findings, comprehensive computational modelling studies were performed to explore the pharmacokinetic and pharmacodynamic profiles of the reported cytotoxic metabolites to present basis for future plant-based anticancer drug discovery.

METHODS

All the available information about the anticancer research in family Malvaceae and its cytotoxic phytometabolites were retrieved from official sources. Extensive search was carried out using the keywords Malvaceae, cancer, cytotoxicity, mechanism and signalling pathway. Pharmacokinetic study was performed on the cytotoxic metabolites using SWISS ADME model. Acute oral toxicity expressed as median lethal dose (LD) was predicted using Pro Tox 3.0 web tool. The compounds were docked using AutoDock Vina platform against epidermal growth factor receptor (EGFR kinase enzyme) obtained from the Protein Data Bank. Molecular dynamic simulations and MMGBSA calculations were performed using GROMACS 2024.2 and gmx_MMPBSA tool v1.5.2.

RESULTS

One hundred forty-five articles were eligible in the study. Several tested compounds showed safe pharmacokinetic properties. Also, the molecular docking study showed that the bioactive metabolites possessed agreeable binding affinities to EGFR kinase enzyme. Tiliroside (25), boehmenan (30), boehmenan H (31), and isoquercetin (22) elicited the highest binding affinity toward the enzyme with a score of -10.4, -10.4, -10.2 and -10.1 Kcal/mol compared to the reference drug erlotinib having a binding score equal to -9 Kcal/mol. Additionally, compounds 25 and 31 elicited binding free energies equal to -42.17 and -42.68 Kcal/mol, respectively, comparable to erlotinib.

DISCUSSION

Overall, the current study presents helpful insights into the pharmacokinetic and pharmacodynamic properties of the reported cytotoxic metabolites belonging to family Malvaceae members. The molecular docking and dynamic simulations results intensify the roles of secondary metabolites from medicinal plants in fighting cancer.

摘要

引言

癌症是仅次于心血管疾病的第二大常见死因,给全球带来了沉重负担。如今,含有大量生物活性代谢物的草药营养产品是开发有前景的化学预防和抗癌药物的基石。锦葵科的某些植物传统上被用于缓解肿瘤。本文综述了有关该植物物种的化学预防和抗癌作用以及分离出的细胞毒性植物代谢物的文献。基于这些发现,进行了全面的计算建模研究,以探索所报道的细胞毒性代谢物的药代动力学和药效学特征,为未来基于植物的抗癌药物发现提供依据。

方法

从官方来源检索了所有关于锦葵科抗癌研究及其细胞毒性植物代谢物的可用信息。使用关键词“锦葵科”“癌症”“细胞毒性”“机制”和“信号通路”进行了广泛搜索。使用SWISS ADME模型对细胞毒性代谢物进行药代动力学研究。使用Pro Tox 3.0网络工具预测以半数致死剂量(LD)表示的急性口服毒性。使用AutoDock Vina平台将化合物与从蛋白质数据库获得的表皮生长因子受体(EGFR激酶)进行对接。使用GROMACS 2024.2和gmx_MMPBSA工具v1.5.2进行分子动力学模拟和MMGBSA计算。

结果

该研究中有145篇文章符合条件。几种测试化合物显示出安全的药代动力学特性。此外,分子对接研究表明,生物活性代谢物与EGFR激酶具有良好的结合亲和力。与结合分数为-9千卡/摩尔的参考药物厄洛替尼相比,椴树苷(25)、波希米亚宁(30)、波希米亚宁H(31)和异槲皮苷(22)对该酶的结合亲和力最高,得分分别为-10.4、-10.4、-10.2和-10.1千卡/摩尔。此外,化合物25和31的结合自由能分别为-42.17和-42.68千卡/摩尔,与厄洛替尼相当。

讨论

总体而言,本研究为锦葵科成员所报道的细胞毒性代谢物的药代动力学和药效学特性提供了有益的见解。分子对接和动力学模拟结果强化了药用植物次生代谢物在抗癌中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3556/11521888/1cbe252ed202/fphar-15-1465055-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验