Suppr超能文献

利用多基因风险评分预测癌症幸存者的心力衰竭

Use of Polygenic Risk Score for Prediction of Heart Failure in Cancer Survivors.

作者信息

Soh Cheng Hwee, Xiang RuiDong, Takeuchi Fumihiko, Marwick Thomas H

机构信息

Imaging Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.

Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.

出版信息

JACC CardioOncol. 2024 Aug 30;6(5):714-727. doi: 10.1016/j.jaccao.2024.04.010. eCollection 2024 Oct.

Abstract

BACKGROUND

The risk for heart failure (HF) is increased among cancer survivors, but predicting individual HF risk is difficult. Polygenic risk scores (PRS) for HF prediction summarize the combined effects of multiple genetic variants specific to the individual.

OBJECTIVES

The aim of this study was to compare clinical HF prediction models with PRS in both cancer and noncancer populations.

METHODS

Cancer and HF diagnoses were identified using International Classification of Diseases-10th Revision codes. HF risk was calculated using the ARIC (Atherosclerosis Risk in Communities) HF score (ARIC-HF). The PRS for HF (PRS-HF) was calculated according to the Global Biobank Meta-analysis Initiative. The predictive performance of the ARIC-HF and PRS-HF was compared using the area under the curve (AUC) in both cancer and noncancer populations.

RESULTS

After excluding 2,644 participants with HF prior to consent, 440,813 participants without cancer (mean age 57 years, 53% women) and 43,720 cancer survivors (mean age 60 years, 65% women) were identified at baseline. Both the ARIC-HF and PRS-HF were significant predictors of incident HF after adjustment for chronic kidney disease, overall health rating, and total cholesterol. The PRS-HF performed poorly in predicting HF among cancer (AUC: 0.552; 95% CI: 0.539-0.564) and noncancer (AUC: 0.561; 95% CI: 0.556-0.566) populations. However, the ARIC-HF predicted incident HF in the noncancer population (AUC: 0.804; 95% CI: 0.800-0.808) and provided acceptable performance among cancer survivors (AUC: 0.748; 95% CI: 0.737-0.758).

CONCLUSIONS

The prediction of HF on the basis of conventional risk factors using the ARIC-HF score is superior compared to the PRS, in cancer survivors, and especially among the noncancer population.

摘要

背景

癌症幸存者发生心力衰竭(HF)的风险增加,但预测个体HF风险具有挑战性。用于HF预测的多基因风险评分(PRS)总结了个体特异性多个基因变异的综合效应。

目的

本研究旨在比较癌症和非癌症人群中临床HF预测模型与PRS。

方法

使用国际疾病分类第十版代码识别癌症和HF诊断。使用社区动脉粥样硬化风险(ARIC)HF评分(ARIC-HF)计算HF风险。根据全球生物银行荟萃分析计划计算HF的PRS(PRS-HF)。在癌症和非癌症人群中,使用曲线下面积(AUC)比较ARIC-HF和PRS-HF的预测性能。

结果

在排除2644名在同意前患有HF的参与者后,基线时确定了440813名无癌症参与者(平均年龄57岁,53%为女性)和43720名癌症幸存者(平均年龄60岁,65%为女性)。在调整慢性肾病、总体健康评分和总胆固醇后,ARIC-HF和PRS-HF均为HF发生的显著预测因素。PRS-HF在预测癌症(AUC:0.552;95%CI:0.539-0.564)和非癌症(AUC:0.561;95%CI:0.556-0.566)人群的HF方面表现不佳。然而,ARIC-HF可预测非癌症人群的HF发生(AUC:0.804;95%CI:0.800-0.808),并在癌症幸存者中表现出可接受的性能(AUC:0.748;95%CI:0.737-0.758)。

结论

在癌症幸存者中,尤其是在非癌症人群中,使用ARIC-HF评分基于传统危险因素预测HF优于PRS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f814/11520200/f2aa12a74a19/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验