Suppr超能文献

存在的金属β-内酰胺酶-L1的蛋白质-蛋白质相互作用网络研究及潜在药物靶点的鉴定。

Protein-protein interaction network study of metallo-beta-lactamase-L1 present in and identification of potential drug targets.

作者信息

Sreenithya K H, Sugumar Shobana

机构信息

Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India.

出版信息

In Silico Pharmacol. 2024 Oct 29;12(2):94. doi: 10.1007/s40203-024-00270-9. eCollection 2024.

Abstract

UNLABELLED

Microorganisms are evolving to withstand the effect of antimicrobial agents and thereby pose a global threat known as antimicrobial resistance. Resistance towards multiple drugs due to various intrinsic as well environmental factors leads to an even more dangerous drug resistance property known as multi-drug resistance (MDR). WHO has recognized MDR bacteria as a top global threat as they complicate the treatment and augment mortality and morbidity risks. Gram-negative bacteria produce beta-lactamase enzymes that can hydrolyze beta-lactam antibiotics, impacting drug susceptibility. , an opportunistic pathogen, exemplifies MDR due to the production of two types of beta-lactamases. The metallo-beta-lactamase (MBL) L1 produced by the bacteria is a class B1 zinc-dependent MBL that is broadly substrate-specific and is a challenge to the currently available treatment options. This study constructs and analyzes a protein-protein interaction network of L1 beta-lactamase to comprehend its role in the MDR property of the bacteria. The network encompasses 51 proteins including L1 MBL (Smlt2667) and 382 interactions, revealing key players in MDR and potential drug targets. The network analysis aids the discernment of antimicrobial gene impact on cellular function, informing drug discovery strategies. This research addresses the emerging challenge of antibiotic resistance and identifies pathways for therapeutic intervention.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s40203-024-00270-9.

摘要

未标注

微生物正在不断进化以抵御抗菌药物的作用,从而构成了一种被称为抗菌耐药性的全球威胁。由于各种内在和环境因素导致对多种药物的耐药性,产生了一种更为危险的耐药特性,即多药耐药性(MDR)。世界卫生组织已将多重耐药菌视为全球首要威胁,因为它们使治疗变得复杂,并增加了死亡率和发病率风险。革兰氏阴性菌产生的β-内酰胺酶可水解β-内酰胺抗生素,影响药物敏感性。作为一种机会性病原体,由于产生两种类型的β-内酰胺酶而成为多药耐药性的典型例子。该细菌产生的金属β-内酰胺酶(MBL)L1是一种B1类锌依赖性MBL,具有广泛的底物特异性,对目前可用的治疗方案构成挑战。本研究构建并分析了L1β-内酰胺酶的蛋白质-蛋白质相互作用网络,以了解其在细菌多药耐药性中的作用。该网络包含51种蛋白质,包括L1 MBL(Smlt2667)和382个相互作用,揭示了多药耐药性中的关键参与者和潜在的药物靶点。网络分析有助于识别抗菌基因对细胞功能的影响,为药物发现策略提供信息。本研究应对了抗生素耐药性这一新兴挑战,并确定了治疗干预的途径。

补充信息

在线版本包含可在10.1007/s40203-024-00270-9获取的补充材料。

相似文献

本文引用的文献

4
Colistin Resistance in Molecular Mechanisms and Epidemiology.黏菌素耐药性的分子机制与流行病学
Antibiotics (Basel). 2023 Mar 4;12(3):516. doi: 10.3390/antibiotics12030516.
10
How methylglyoxal kills bacteria: An ultrastructural study.甲基乙二醛如何杀死细菌:一项超微结构研究。
Ultrastruct Pathol. 2016;40(2):107-11. doi: 10.3109/01913123.2016.1154914. Epub 2016 Mar 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验