Pellumbi Kevinjeorjios, Kräenbring Mena-Alexander, Krisch Dominik, Wiesner Wiebke, Sanden Sebastian, Siegmund Daniel, Özcan Fatih, Puring Kai Junge, Cao Rui, Schöfberger Wolfgang, Segets Doris, Apfel Ulf-Peter
Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelderstraße 3, 46047, Oberhausen, Germany.
Institute for Energy and Materials Processes - Particle Science and Technology (EMPI-PST), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany.
Small. 2025 Feb;21(8):e2408154. doi: 10.1002/smll.202408154. Epub 2024 Oct 31.
In recent years, CO electrolysis, particularly the electrochemical reduction of CO to CO in zero-gap systems, has gained significant attention. While Ag-coated gas diffusion electrodes are commonly used in state-of-the-art systems, heterogenized molecular catalysts like bis-coordinated homoleptic silver(I) N,N-bis(arylimino)-acenaphthene (Ag-BIAN) complexes are emerging as a promising alternative due to their tunability and high mass activity. In this study, the influence of ink composition on the performance of Ag-BIAN-based GDEs in zero-gap electrolyzers (ZGEs) are systematically explored at 60 °C and 600 mA cm⁻. Sedimentation analyses across various solvents informed the selection of optimal solvent-catalyst and solvent-carbon additive combinations, streamlining the GDE optimization process and reducing associated costs and time. These results demonstrate that solvent choice and dilution state of the ink are critical factors impacting CO reduction, achieving faradaic efficiencies for CO production (FE) up to 67% at 600 mA cm⁻ with catalyst loadings as low as 0.2 mg cm⁻. These findings lay the groundwork for advancing from homogeneous H-type cells to industrial ZGE systems through tailored ink engineering.
近年来,CO电解,特别是在零间隙系统中将CO电化学还原为CO,受到了广泛关注。虽然涂银气体扩散电极在先进系统中普遍使用,但像双配位均配银(I)N,N-双(芳基亚氨基)苊(Ag-BIAN)配合物这样的多相分子催化剂因其可调性和高质量活性正成为一种有前途的替代方案。在本研究中,在60°C和600 mA cm⁻的条件下,系统地探索了油墨组成对零间隙电解槽(ZGE)中基于Ag-BIAN的气体扩散电极(GDE)性能的影响。通过对各种溶剂进行沉降分析,确定了最佳溶剂-催化剂和溶剂-碳添加剂组合,简化了GDE优化过程,降低了相关成本和时间。这些结果表明,油墨的溶剂选择和稀释状态是影响CO还原的关键因素,在600 mA cm⁻的电流密度下,催化剂负载低至0.2 mg cm⁻时,CO生成的法拉第效率(FE)高达67%。这些发现为通过定制油墨工程从均相H型电池向工业ZGE系统发展奠定了基础。