Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
J Am Chem Soc. 2023 Apr 5;145(13):7050-7064. doi: 10.1021/jacs.2c10212. Epub 2023 Mar 21.
This Perspective argues that most redox reactions of materials at an interface with a protic solution involve net proton-coupled electron transfer (PCET) (or other cation-coupled ET). This view contrasts with the traditional electron-transfer-focused view of redox reactions at semiconductors, but redox processes at metal surfaces are often described as PCET. Taking a thermodynamic perspective, transfer of an electron is typically accompanied by a stoichiometric proton, much as the chemistry of lithium-ion batteries involves coupled transfers of e and Li. The PCET viewpoint implicates the surface-H bond dissociation free energy (BDFE) as the preeminent energetic parameter and its conceptual equivalents, the electrochemical e/H potential versus the reversible hydrogen electrode (RHE) and the free energy of hydrogenation, Δ°. These parameters capture the thermochemistry of PCET at interfaces better than electronic parameters such as Fermi energies, electron chemical potentials, flat-band potentials, or band-edge energies. A unified picture of PCET at metal and semiconductor surfaces is presented. Exceptions, limitations, implications, and future directions motivated by this approach are described.
本文观点认为,大多数与质子溶液界面的材料的氧化还原反应都涉及净质子耦合电子转移(PCET)(或其他阳离子耦合 ET)。这种观点与半导体中氧化还原反应的传统电子转移为重点的观点形成对比,但金属表面的氧化还原过程通常被描述为 PCET。从热力学的角度来看,电子的转移通常伴随着化学计量质子的转移,就像锂离子电池的化学涉及电子和 Li 的耦合转移一样。PCET 观点暗示表面-H 键离解自由能(BDFE)是最重要的能量参数,以及其概念等效物,电化学 e/H 相对于可逆氢电极(RHE)的电位和氢化自由能,Δ°。这些参数比电子参数(如费米能、电子化学势、平带势或能带边缘能)更好地捕捉界面上 PCET 的热化学性质。本文提出了金属和半导体表面 PCET 的统一观点。描述了这种方法所带来的例外、限制、影响和未来方向。