Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195-1700 , United States.
Department of Chemistry , University of Utah , 315 S 1400 E , Salt Lake City , Utah 84112-0850 , United States.
J Am Chem Soc. 2018 Nov 28;140(47):16184-16189. doi: 10.1021/jacs.8b09120. Epub 2018 Nov 15.
Stoichiometric proton-coupled electron transfer (PCET) reactions of the metal-organic framework (MOF) MIL-125, TiO(OH)(bdc) (bdc = terephthalate), are described. In the presence of UV light and 2-propanol, MIL-125 was photoreduced to a maximum of 2( e/H) per Ti node. This stoichiometry was shown by subsequent titration of the photoreduced material with the 2,4,6-tri- tert-butylphenoxyl radical. This reaction occurred by PCET to give the corresponding phenol and the original, oxidized MOF. The high level of charging, and the independence of charging amount with particle size of the MOF samples, shows that the MOF was photocharged throughout the bulk and not only at the surface. NMR studies showed that the product phenol is too large to fit in the pores, so the phenoxyl reaction must have occurred at the surface. Attempts to oxidize photoreduced MIL-125 with pure electron acceptors resulted in multiple products, underscoring the importance of removing e and H together. Our results require that the e and H stored within the MOF architecture must both be mobile to transfer to the surface for reaction. Analogous studies on the soluble cluster TiO(OOC Bu) support the notion that reduction occurs at the Ti MOF nodes and furthermore that this reduction occurs via e/H (H-atom) equivalents. The soluble cluster also suggests degradation pathways for the MOFs under extended irradiation. The methods described are a facile characterization technique to study redox-active materials and should be broadly applicable to, for example, porous materials like MOFs.
描述了金属有机骨架(MOF)MIL-125 和 TiO(OH)(bdc)(bdc = 对苯二甲酸)的化学计量质子耦合电子转移(PCET)反应。在存在紫外光和 2-丙醇的情况下,MIL-125 被光还原到每个 Ti 节点最多 2(e/H)。通过随后用 2,4,6-三-叔丁基苯氧自由基滴定光还原材料证实了这种化学计量。该反应通过 PCET 发生,生成相应的苯酚和原始氧化 MOF。高充电水平以及 MOF 样品粒径与充电量的独立性表明 MOF 在整个体相而不仅仅在表面被光充电。NMR 研究表明产物苯酚太大而无法容纳在孔中,因此苯氧反应必须发生在表面。尝试用纯电子受体氧化光还原的 MIL-125 导致产生多种产物,这突出了一起去除 e 和 H 的重要性。我们的结果要求 MOF 结构内储存的 e 和 H 都必须是可移动的,以便转移到表面进行反应。对可溶性团簇 TiO(OOC Bu) 的类似研究支持这样的观点,即还原发生在 Ti MOF 节点上,此外,这种还原通过 e/H(H-原子)当量发生。可溶性团簇还提出了在扩展照射下 MOF 的降解途径。所描述的方法是一种研究氧化还原活性材料的简便表征技术,应该广泛适用于例如 MOF 等多孔材料。