棒状杆菌细胞膜囊泡破坏致龋菌间的共生体。
Corynebacterial membrane vesicles disrupt cariogenic interkingdom assemblages.
机构信息
Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA.
Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
出版信息
Appl Environ Microbiol. 2024 Nov 20;90(11):e0088524. doi: 10.1128/aem.00885-24. Epub 2024 Oct 31.
Polymicrobial diseases such as periodontal disease and caries pose significant treatment challenges due to their resistance to common approaches like antibiotic therapy. These infections exhibit increased resilience, due to microbial interactions that also disrupt host immune responses. Current research focuses on virulence and disease-promoting interactions, but less is known about interactions that could inhibit or prevent disease development. Normally human-associated microbiomes maintain homeostasis, preventing pathobionts from becoming dominant. In conditions like chronic disseminated candidiasis or severe early childhood caries (s-ECC), an overgrowth of microbes such as disrupts this balance. Typically, coexists benignly within the microbial community but can become pathogenic, forming biofilms and interacting with other microbes such as cariogenic . This interaction is particularly significant in s-ECC, where it exacerbates the disease's progression and severity. Here, we present that , itself and through its extracellular membrane vesicles disrupts interkingdom assemblages between and . Mechanistically the interaction interference occurs at the genetic level with downregulated HWP1 expression, a surface protein specifically induced in the presence of promoting the interkingdom interaction. Additionally, we show that can impede s systemic virulence in the infection model. This suggests that oral corynebacteria may act as a beneficial commensal species, exerting antifungal effects within polymicrobial communities and opening new avenues for managing polymicrobial diseases.IMPORTANCEPolymicrobial diseases such as severe early childhood caries (s-ECC) lack effective treatment options. Prevention, requiring a deeper understanding of ecological processes before the onset of disease symptoms, could be a potential strategy. In this context, we investigated how relatively abundant oral biofilm species, which are associated with oral health, can interfere with the interkingdom partnership of and . This partnership is a significant driver of tooth decay in s-ECC due to synergistic activities that increase cariogenicity. Our study reveals that oral corynebacteria, through the production of extracellular membrane vesicles, can disrupt the and partnership by inhibiting fungal hyphae formation. Additionally, the fatty acid cargo within these vesicles exhibits antifungal properties, suggesting that corynebacteria play a role in shaping microbial dynamics within the oral biofilm.
多微生物疾病,如牙周病和龋齿,由于对常见治疗方法(如抗生素治疗)具有抵抗力,因此带来了重大的治疗挑战。这些感染具有更高的弹性,这是由于微生物相互作用破坏了宿主免疫反应。目前的研究重点是毒力和促进疾病的相互作用,但对可能抑制或预防疾病发展的相互作用知之甚少。正常情况下,与人类相关的微生物组维持着体内平衡,防止机会致病菌成为优势菌。在慢性播散性念珠菌病或严重婴幼儿早期龋齿(s-ECC)等情况下,微生物的过度生长,如 ,会破坏这种平衡。通常情况下, 良性共生存在于微生物群落中,但也可能成为病原体,形成生物膜并与其他微生物如致龋 相互作用。这种相互作用在 s-ECC 中尤为重要,它会加剧疾病的进展和严重程度。在这里,我们提出, 本身及其细胞外膜囊泡会破坏 和 之间的种间组合。从机制上讲,这种相互作用干扰发生在遗传水平上,导致 HWP1 表达下调,这是一种表面蛋白,只有在 存在的情况下才会特异性诱导,促进种间相互作用。此外,我们还表明, 可以阻碍 s 型感染模型中的系统性毒力。这表明口腔棒状杆菌可能作为一种有益的共生种发挥作用,在多微生物群落中发挥抗真菌作用,并为管理多微生物疾病开辟新途径。
重要性
严重婴幼儿早期龋齿(s-ECC)等多微生物疾病缺乏有效治疗方法。在疾病症状出现之前,通过更深入地了解生态过程来进行预防,可能是一种潜在的策略。在这种情况下,我们研究了与口腔健康相关的相对丰富的口腔生物膜 物种如何干扰 和 之间的种间伙伴关系。在 s-ECC 中,这种伙伴关系是导致牙齿腐烂的一个重要驱动因素,因为协同活动增加了致龋性。我们的研究表明,口腔棒状杆菌通过产生细胞外膜囊泡,可以通过抑制真菌菌丝形成来破坏 和 之间的伙伴关系。此外,这些囊泡中的脂肪酸货物具有抗真菌特性,这表明棒状杆菌在塑造口腔生物膜中的微生物动态方面发挥作用。
相似文献
Appl Environ Microbiol. 2024-11-20
Front Cell Infect Microbiol. 2023
Appl Microbiol Biotechnol. 2022-11
引用本文的文献
J Microbiol Biotechnol. 2025-3-27
本文引用的文献
Trends Microbiol. 2023-12
Infect Immun. 2023-9-14
Microorganisms. 2023-5-25
Front Cell Infect Microbiol. 2023
Antibiotics (Basel). 2022-12-1
J Oral Microbiol. 2022-11-9
Proc Natl Acad Sci U S A. 2022-10-11