Montesuma Eduardo Fernandes, Mboula Fred Ngole, Souloumiac Antoine
IEEE Trans Pattern Anal Mach Intell. 2025 Feb;47(2):1161-1180. doi: 10.1109/TPAMI.2024.3489030. Epub 2025 Jan 9.
Recently, Optimal Transport has been proposed as a probabilistic framework in Machine Learning for comparing and manipulating probability distributions. This is rooted in its rich history and theory, and has offered new solutions to different problems in machine learning, such as generative modeling and transfer learning. In this survey we explore contributions of Optimal Transport for Machine Learning over the period 2012 - 2023, focusing on four sub-fields of Machine Learning: supervised, unsupervised, transfer and reinforcement learning. We further highlight the recent development in computational Optimal Transport and its extensions, such as partial, unbalanced, Gromov and Neural Optimal Transport, and its interplay with Machine Learning practice.
最近,最优传输已被提议作为机器学习中用于比较和操纵概率分布的概率框架。这源于其丰富的历史和理论,并为机器学习中的不同问题提供了新的解决方案,如生成建模和迁移学习。在本综述中,我们探讨了2012年至2023年期间最优传输对机器学习的贡献,重点关注机器学习的四个子领域:监督学习、无监督学习、迁移学习和强化学习。我们还进一步强调了计算最优传输及其扩展(如部分最优传输、非平衡最优传输、格罗莫夫最优传输和神经最优传输)的最新进展,以及它与机器学习实践的相互作用。