Suppr超能文献

细胞间相互作用和通讯研究方法的多样化。

The diversification of methods for studying cell-cell interactions and communication.

机构信息

Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.

Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.

出版信息

Nat Rev Genet. 2024 Jun;25(6):381-400. doi: 10.1038/s41576-023-00685-8. Epub 2024 Jan 18.

Abstract

No cell lives in a vacuum, and the molecular interactions between cells define most phenotypes. Transcriptomics provides rich information to infer cell-cell interactions and communication, thus accelerating the discovery of the roles of cells within their communities. Such research relies heavily on algorithms that infer which cells are interacting and the ligands and receptors involved. Specific pressures on different research niches are driving the evolution of next-generation computational tools, enabling new conceptual opportunities and technological advances. More sophisticated algorithms now account for the heterogeneity and spatial organization of cells, multiple ligand types and intracellular signalling events, and enable the use of larger and more complex datasets, including single-cell and spatial transcriptomics. Similarly, new high-throughput experimental methods are increasing the number and resolution of interactions that can be analysed simultaneously. Here, we explore recent progress in cell-cell interaction research and highlight the diversification of the next generation of tools, which have yielded a rich ecosystem of tools for different applications and are enabling invaluable discoveries.

摘要

没有细胞是孤立存在的,细胞间的分子相互作用决定了大多数表型。转录组学提供了丰富的信息来推断细胞-细胞相互作用和通讯,从而加速了对细胞在其群落中作用的发现。这类研究严重依赖于推断哪些细胞在相互作用以及涉及的配体和受体的算法。不同研究领域的特定压力推动了下一代计算工具的发展,为新的概念机会和技术进步提供了可能。更复杂的算法现在可以考虑细胞的异质性和空间组织、多种配体类型和细胞内信号事件,并能够使用更大和更复杂的数据集,包括单细胞和空间转录组学。同样,新的高通量实验方法也增加了可以同时分析的相互作用的数量和分辨率。在这里,我们探讨了细胞间相互作用研究的最新进展,并强调了下一代工具的多样化,这些工具为不同的应用提供了丰富的工具生态系统,并为有价值的发现提供了支持。

相似文献

引用本文的文献

6
Advancing muscle aging and sarcopenia research through spatial transcriptomics.通过空间转录组学推进肌肉衰老和肌肉减少症研究。
Osteoporos Sarcopenia. 2025 Jun;11(2 Suppl):22-31. doi: 10.1016/j.afos.2025.05.002. Epub 2025 Jun 12.
7
Decoding sex differences in human immunity through systems immunology.通过系统免疫学解析人类免疫中的性别差异。
Oxf Open Immunol. 2025 Jul 4;6(1):iqaf006. doi: 10.1093/oxfimm/iqaf006. eCollection 2025.

本文引用的文献

1
Recent Advances in Optimal Transport for Machine Learning.机器学习中最优传输的最新进展
IEEE Trans Pattern Anal Mach Intell. 2025 Feb;47(2):1161-1180. doi: 10.1109/TPAMI.2024.3489030. Epub 2025 Jan 9.
4
Large-scale foundation model on single-cell transcriptomics.单细胞转录组学的大规模基础模型。
Nat Methods. 2024 Aug;21(8):1481-1491. doi: 10.1038/s41592-024-02305-7. Epub 2024 Jun 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验