Suppr超能文献

SLR:一种用于阿尔茨海默病分类的基于Sinkhorn散度的改进逻辑回归模型。

SLR: A Modified Logistic Regression Model with Sinkhorn Divergence for Alzheimer's Disease Classification.

作者信息

Zhan Qipeng, Zhou Zhuoping, Wen Zixuan, Wang Zexuan, Tong Boning, Huang Heng, Saykin Andrew J, Thompson Paul M, Davatzikos Christos, Shen Li

机构信息

University of Pennsylvania, Philadelphia, PA, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2025 Jun 10;2025:634-643. eCollection 2025.

Abstract

Logistic regression is a widely used model in machine learning, particularly as a baseline for binary classification tasks due to its simplicity, effectiveness, and interpretability. It is especially powerful when dealing with categorical features. Despite its advantages, standard logistic regression fails to capture the distributional and geometric structure of data, especially when features are derived from structured spaces like brain imaging. For instance, in Voxel-Based Morphometry (VBM), measurements from distinct brain regions follow a clear spatial organization, which standard logistic regression cannot fully leverage. In this paper, we propose Sinkhorn Logistic Regression (SLR), a variant of logistic regression that incorporates the Sinkhorn divergence as a loss function. This adaptation enables the model to leverage geometric information about the data distribution, enhancing its performance on structured datasets.

摘要

逻辑回归是机器学习中广泛使用的模型,特别是作为二分类任务的基线,因其简单、有效且具有可解释性。在处理分类特征时,它尤其强大。尽管有这些优点,但标准逻辑回归无法捕捉数据的分布和几何结构,特别是当特征来自诸如脑成像等结构化空间时。例如,在基于体素的形态计量学(VBM)中,来自不同脑区的测量遵循清晰的空间组织,而标准逻辑回归无法充分利用这一点。在本文中,我们提出了Sinkhorn逻辑回归(SLR),这是逻辑回归的一种变体,它将Sinkhorn散度作为损失函数。这种调整使模型能够利用关于数据分布的几何信息,提高其在结构化数据集上的性能。

相似文献

6
Selegiline for Alzheimer's disease.司来吉兰用于治疗阿尔茨海默病。
Cochrane Database Syst Rev. 2003(1):CD000442. doi: 10.1002/14651858.CD000442.

本文引用的文献

1
Recent Advances in Optimal Transport for Machine Learning.机器学习中最优传输的最新进展
IEEE Trans Pattern Anal Mach Intell. 2025 Feb;47(2):1161-1180. doi: 10.1109/TPAMI.2024.3489030. Epub 2025 Jan 9.
3
Distance-weighted Sinkhorn loss for Alzheimer's disease classification.用于阿尔茨海默病分类的距离加权Sinkhorn损失
iScience. 2024 Feb 12;27(3):109212. doi: 10.1016/j.isci.2024.109212. eCollection 2024 Mar 15.
6
Optimal Mass Transport: Signal processing and machine-learning applications.最优质量传输:信号处理与机器学习应用
IEEE Signal Process Mag. 2017 Jul;34(4):43-59. doi: 10.1109/MSP.2017.2695801. Epub 2017 Jul 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验