Fox Lani, Miller William C, Gesink Dionne, Doherty Irene, Serre Marc
Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, United States of America.
Lani Fox Geostatistical Consulting, Claremont, California, United States of America.
PLoS Comput Biol. 2024 Oct 31;20(10):e1012464. doi: 10.1371/journal.pcbi.1012464. eCollection 2024 Oct.
In 2008-2011 Forsyth County, North Carolina (NC) experienced a four-fold increase in syphilis rising to over 35 cases per 100,000 mirroring the 2021 state syphilis rate. Our methodology extends current models with: 1) donut geomasking to enhance resolution while protecting patient privacy; 2) a moving window uniform grid to control the modifiable areal unit problem, edge effect and remove kriging islands; and 3) mitigating the "small number problem" with Uniform Model Bayesian Maximum Entropy (UMBME). Data is 2008-2011 early syphilis cases reported to the NC Department of Health and Human Services for Forsyth County. Results were assessed using latent rate theory cross validation. We show combining a moving window and a UMBME analysis with geomasked data effectively predicted the true or latent syphilis rate 5% to 26% more accurate than the traditional, geopolitical boundary method. It removed kriging islands, reduced background incidence rate to 0, relocated nine outbreak hotspots to more realistic locations, and elucidated hotspot connectivity producing more realistic geographical patterns for targeted insights. Using the Forsyth outbreak as a case study showed how the outbreak emerged from endemic areas spreading through sexual core transmitters and contextualizing the outbreak to current and past outbreaks. As the dynamics of sexually transmitted infections spread have changed to online partnership selection and demographically to include more women, partnership selection continues to remain highly localized. Furthermore, it is important to present methods to increase interpretability and accuracy of visual representations of data.
2008年至2011年期间,北卡罗来纳州福赛斯县梅毒发病率增长了四倍,升至每10万人超过35例,与2021年该州梅毒发病率相当。我们的方法对现有模型进行了扩展:1)采用环形地理掩码,在保护患者隐私的同时提高分辨率;2)使用移动窗口均匀网格来控制可修改区域单元问题、边缘效应并消除克里金岛;3)用均匀模型贝叶斯最大熵(UMBME)减轻“小数量问题”。数据为2008年至2011年向北卡罗来纳州卫生与公众服务部报告的福赛斯县早期梅毒病例。结果采用潜在发病率理论交叉验证进行评估。我们发现,将移动窗口和UMBME分析与地理掩码数据相结合,能有效预测真实或潜在的梅毒发病率,比传统的地缘政治边界方法精确5%至26%。它消除了克里金岛,将背景发病率降至0,将九个疫情热点重新定位到更实际的位置,并阐明了热点之间的联系,产生更符合实际的地理模式以进行针对性洞察。以福赛斯疫情为例,展示了疫情是如何从流行地区通过性传播核心传播者蔓延开来,并将此次疫情与当前及过去的疫情情况相结合。由于性传播感染的传播动态已转变为在线伴侣选择,且在人口统计学上包括了更多女性,伴侣选择仍然高度本地化。此外,提出提高数据可视化表示的可解释性和准确性的方法也很重要。