Guangdong Provincial Key Laboratory of In-Memory Computing Chips, School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, P. R. China.
College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China.
ACS Nano. 2024 Nov 12;18(45):31309-31322. doi: 10.1021/acsnano.4c10383. Epub 2024 Oct 31.
Neuromorphic bioelectronics aim to integrate electronics with biological systems yet encounter challenges in biocompatibility, operating voltages, power consumption, and stability. This study presents biocompatible neuromorphic devices fabricated from acellular dermal matrix (ADM) derived from porcine dermis using low-temperature supercritical CO extraction. The ADM preserves the natural scaffold structure of collagen and minimizes immunogenicity by eliminating cells, fats, and noncollagenous impurities, ensuring excellent biocompatibility. The ADM-based devices emulate biological ion channels with biphasic membrane current modulation, exhibiting temperature dependency and pH sensitivity. It operates at an ultralow voltage of 1 mV and demonstrates reliable synaptic modulation exceeding 4 × 10 endurance cycles. The activation voltage can be theoretically as low as 59 μV, comparable to brainwave signals with a power of merely 7 aJ/event. Furthermore, a brain-like forgetting visualization algorithm is developed, leveraging the synaptic forgetting plasticity of ADM-based devices to achieve complex computing tasks in a highly energy-efficient manner. Neuromorphic devices based on ADM not only hold potential in implantable biointerfaces due to their exceptional biocompatibility, ultralow voltage, and power but also provide a feasible way for energy-efficient computing paradigms through a synergistic hardware-software approach.
神经形态生物电子学旨在将电子学与生物系统集成,但在生物兼容性、工作电压、功耗和稳定性方面面临挑战。本研究提出了使用低温超临界 CO2 萃取从猪皮中提取的无细胞真皮基质 (ADM) 制造的生物兼容神经形态器件。ADM 保留了胶原蛋白的天然支架结构,并通过去除细胞、脂肪和非胶原蛋白杂质最大限度地降低免疫原性,从而确保了出色的生物兼容性。基于 ADM 的器件通过双相膜电流调制模拟生物离子通道,表现出温度依赖性和 pH 敏感性。它在超低的 1 mV 电压下工作,并展示了超过 4×10^5 次循环的可靠突触调制。理论上,激活电压可以低至 59 μV,与功率仅为 7 aJ/事件的脑电波信号相当。此外,还开发了一种类似大脑的遗忘可视化算法,利用基于 ADM 的器件的突触遗忘可塑性来以高效节能的方式实现复杂的计算任务。基于 ADM 的神经形态器件不仅由于其出色的生物兼容性、超低电压和功耗,在植入式生物接口方面具有潜力,而且还通过协同的硬件-软件方法为节能计算范式提供了一种可行的途径。