Suppr超能文献

使用中介分析和结构方程模型来模拟社会经济差异、生物标志物和环境暴露对表型年龄的影响。

Modeling the impact of socioeconomic disparity, biological markers and environmental exposures on phenotypic age using mediation analysis and structural equation models.

机构信息

Department of Computer, Electrical and Biomedical Engineering, University of Pavia, Pavia, Italy; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Int J Med Inform. 2025 Jan;193:105661. doi: 10.1016/j.ijmedinf.2024.105661. Epub 2024 Oct 28.

Abstract

INTRODUCTION

Average age is increasing worldwide, raising the public health burden of age-related diseases, as more resources will be required to manage treatments. Phenotypic Age is a score that can be useful to provide an estimate of the probability of developing aging-related conditions, and prevention of such conditions could be performed efficiently studying the mechanisms leading to an increased phenotypic age. The objective of this study is to characterize the mechanisms that lead to aging acceleration from the interactions among socio-demographic factors, health predispositions and biological phenotypes.

METHODS

We present an approach based on the combination of mediation analysis and structural equation models (SEM) to better characterize these mechanisms, quantifying the interactions between biological and external factors and the effects of preexisting health conditions and socioeconomic disparities. We use two independent cohorts of the NHANES dataset: we use the largest (n = 13,186) to select the variables that enlarge the gap between phenotypic and chronological ages, we then create a SEM based on nested linear regressions to quantify the influence of all sociodemographic variables expressed in three latent variables indicating ethnicity, socioeconomic status and preexisting health status. We then replicate the model and apply it to the second cohort (n = 4,425) to compare the results.

RESULTS

Results show that phenotypic age increases with poor glucose control or obesity-related biomarkers, especially if combined with a low socioeconomic status or the presence of chronic or vascular diseases, and provide a framework to quantify these relationships. Black ethnicity, low income/education and a history of chronic diseases are also associated with a higher phenotypic age. Although these findings are already known in literature, the proposed SEM-based framework provides an useful tool to assess the combinations of these heterogeneous factors from a quantitative point of view.

CONCLUSION

In an aging society, phenotypic age is an important metric that can be used to estimate the individual health risk, however its value is influenced by a myriad of external factors, both biological and sociodemographic. The framework proposed in this paper can help quantifying the combined effects of these factors and be a starting point to the creation of personalized prevention and intervention strategies.

摘要

简介

全球人口平均年龄不断增长,导致与年龄相关的疾病负担增加,需要更多资源来管理治疗。表型年龄是一种可以用来估计与衰老相关疾病发生概率的指标,通过研究导致表型年龄增加的机制,可以有效地预防这些疾病。本研究的目的是从社会人口因素、健康倾向和生物表型的相互作用中,描述导致衰老加速的机制。

方法

我们提出了一种基于中介分析和结构方程模型(SEM)结合的方法,以更好地描述这些机制,量化生物和外部因素之间的相互作用,以及现有健康状况和社会经济差距的影响。我们使用 NHANES 数据集的两个独立队列:我们使用最大的队列(n=13186)来选择扩大表型年龄和实际年龄差距的变量,然后基于嵌套线性回归创建一个 SEM,以量化所有社会人口变量在三个潜在变量中的影响,这些潜在变量表示族裔、社会经济地位和现有的健康状况。然后,我们复制模型并将其应用于第二个队列(n=4425),以比较结果。

结果

结果表明,表型年龄随葡萄糖控制不佳或肥胖相关生物标志物的增加而增加,尤其是当与低社会经济地位或慢性或血管疾病同时存在时,这为量化这些关系提供了一个框架。黑人种族、低收入/教育水平和慢性疾病史也与较高的表型年龄相关。尽管这些发现在文献中已经很常见,但基于 SEM 的框架提供了一种有用的工具,可以从定量的角度评估这些异质因素的组合。

结论

在老龄化社会中,表型年龄是一个重要的指标,可以用来估计个体的健康风险,但其价值受到无数生物和社会人口因素的影响。本文提出的框架可以帮助量化这些因素的综合影响,并为制定个性化的预防和干预策略提供起点。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验