Suppr超能文献

DTA-GTOmega:利用OmegaFold蛋白质结构通过图变换器增强药物-靶点结合亲和力预测

DTA-GTOmega: Enhancing Drug-Target Binding Affinity Prediction with Graph Transformers Using OmegaFold Protein Structures.

作者信息

Quan Lijun, Wu Jian, Jiang Yelu, Pan Deng, Qiang Lyu

机构信息

School of Computer Science and Technology, Soochow University, Jiangsu 215006, China; Collaborative Innovation Center of Novel Software Technology and Industrialization, Jiangsu 210000, China.

China Mobile (Suzhou) Software Technology Co., Ltd., Suzhou 215000, China.

出版信息

J Mol Biol. 2025 Mar 15;437(6):168843. doi: 10.1016/j.jmb.2024.168843. Epub 2024 Oct 29.

Abstract

Understanding drug-protein interactions is crucial for elucidating drug mechanisms and optimizing drug development. However, existing methods have limitations in representing the three-dimensional structure of targets and capturing the complex relationships between drugs and targets. This study proposes a new method, DTA-GTOmega, for predicting drug-target binding affinity. DTA-GTOmega utilizes OmegaFold to predict protein three-dimensional structure and construct target graphs, while processing drug SMILES sequences with RDKit to generate drug graphs. By employing multi-layer graph transformer modules and co-attention modules, this method effectively integrates atomic-level features of drugs and residue-level features of targets, accurately modeling the complex interactions between drugs and targets, thereby significantly improving the accuracy of binding affinity predictions. Our method outperforms existing techniques on benchmark datasets such as KIBA, Davis, and BindingDB_Kd under cold-start setting. Moreover, DTA-GTOmega demonstrates competitive performance in real-world DTI scenarios involving DrugBank data and drug-target interactions related to cardiovascular and nervous system-related diseases, highlighting its robust generalization capabilities. Additionally, the introduced DTI evaluation metrics further validate DTA-GTOmega's potential in handling imbalanced data.

摘要

理解药物与蛋白质的相互作用对于阐明药物作用机制和优化药物开发至关重要。然而,现有方法在表示靶点的三维结构以及捕捉药物与靶点之间的复杂关系方面存在局限性。本研究提出了一种新的方法DTA-GTOmega,用于预测药物-靶点结合亲和力。DTA-GTOmega利用OmegaFold预测蛋白质三维结构并构建靶点图,同时使用RDKit处理药物SMILES序列以生成药物图。通过采用多层图变换器模块和协同注意力模块,该方法有效地整合了药物的原子级特征和靶点的残基级特征,准确地对药物与靶点之间的复杂相互作用进行建模,从而显著提高了结合亲和力预测的准确性。在冷启动设置下,我们的方法在KIBA、Davis和BindingDB_Kd等基准数据集上优于现有技术。此外,DTA-GTOmega在涉及DrugBank数据以及与心血管和神经系统相关疾病的药物-靶点相互作用的实际药物-靶点相互作用(DTI)场景中表现出具有竞争力的性能,突出了其强大的泛化能力。此外,引入的DTI评估指标进一步验证了DTA-GTOmega在处理不平衡数据方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验