Jäckering Anna, Göttsch Frederike, Schäffler Moritz, Doerr Mark, Bornscheuer Uwe T, Wei Ren, Strodel Birgit
Institute of Theoretical and Computational Chemistry, Heinrich Heine University, Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
JACS Au. 2024 Sep 26;4(10):4000-4012. doi: 10.1021/jacsau.4c00718. eCollection 2024 Oct 28.
Plastic-degrading enzymes facilitate the biocatalytic recycling of poly(ethylene terephthalate) (PET), a significant synthetic polymer, and substantial progress has been made in utilizing PET hydrolases for industrial applications. To fully exploit the potential of these enzymes, a deeper mechanistic understanding followed by targeted protein engineering is essential. Through advanced molecular dynamics simulations and free energy analysis methods, we elucidated the complete pathway from the initial binding of two PET hydrolases-the thermophilic leaf-branch compost cutinase (LCC) and polyester hydrolase 1 (PES-H1)-to an amorphous PET substrate, ultimately leading to a PET chain entering the active site in a hydrolyzable conformation. Our findings indicate that initial PET binding is nonspecific and driven by polar and hydrophobic interactions. We demonstrate that the subsequent entry of PET into the active site can occur via one of three key pathways, identifying barriers related to both PET-PET and PET-enzyme interactions, as well as specific residues highlighted through and mutagenesis. These insights not only enhance our understanding of the mechanisms underlying PET degradation and facilitate the development of targeted enzyme enhancement strategies but also provide a novel framework applicable to enzyme studies across various disciplines.
塑料降解酶有助于聚对苯二甲酸乙二酯(PET)这一重要合成聚合物的生物催化循环利用,并且在将PET水解酶用于工业应用方面已取得了重大进展。为了充分挖掘这些酶的潜力,深入了解其作用机制并进行有针对性的蛋白质工程改造至关重要。通过先进的分子动力学模拟和自由能分析方法,我们阐明了两种PET水解酶——嗜热叶枝堆肥角质酶(LCC)和聚酯水解酶1(PES-H1)——从最初与无定形PET底物结合到最终使一条PET链以可水解构象进入活性位点的完整途径。我们的研究结果表明,PET的初始结合是非特异性的,由极性和疏水相互作用驱动。我们证明,PET随后进入活性位点可通过三种关键途径之一发生,确定了与PET-PET和PET-酶相互作用相关的障碍,以及通过[具体方法1]和[具体方法2]诱变突出显示的特定残基。这些见解不仅加深了我们对PET降解潜在机制的理解,促进了有针对性的酶增强策略的开发,还提供了一个适用于各个学科酶研究的新框架。